
SCYLLADB WHITE PAPER

SQL to NoSQL:
Architecture Differences
and Considerations
for Migration

NoSQLRDBMS

CONTENTS

SQL VERSUS NOSQL BASICS 3

ARCHITECTURAL DIFFERENCES BETWEEN SQL AND NOSQL 4

ECONOMIES OF SCALE 4

REPLICAS OF DATA 5

APPLICATION-DRIVEN USE CASES 5

CONSISTENCY VERSUS AVAILABILITY 6

ACID VERSUS BASE CONSISTENCY 6
LIGHTWEIGHT TRANSACTIONS 7

QUERY LANGUAGES: SQL VERSUS CQL 8
JOINS 8

VALUES VERSUS OBJECTS 8

SCALING CHARACTERISTICS 8

CONSIDERATIONS FOR SQL TO NOSQL MIGRATIONS 8
DATA MODELS 8

QUERY PATTERNS 9
MATERIALIZED VIEWS 10

SECONDARY INDEXES 10

REFERENTIAL INTEGRITY 10

MIGRATION TO NOSQL 10
HYBRID CONVERSION TO NOSQL 10

DATA FORKLIFTING 10

DATA VALIDATION 10

SQL AND NOSQL DATABASE ADMINISTRATION 10
PERFORMANCE MONITORING AND TUNING 10

BACKUP AND RECOVERY 11

NODE REPAIR AND REPLACEMENT 12

SCYLLA NOSQL: SCALE-UP OF RDBMS
AND HIGH AVAILABILITY OF NON-RELATIONAL 12

3

SQL VERSUS NOSQL BASICS
Since their invention in 1970 by Edgar Codd,
relational databases have served as the default
data store for almost every IT organization, large
or small. Today, the most iconic and familiar
relational databases include IBM DB2, Oracle
Database, Microsoft SQL Server, PostgreSQL,
and MySQL.

Structured Query Language, or SQL, was
invented at IBM soon after the introduction of
the relational database. Since its introduction,
SQL has become the most widely used
database language, used for querying data, data
manipulation (insert, update and delete), data
definition (schema creation and modification),
and data access control. Though the terms refer
to different technologies, ‘SQL’ and ‘RDBMS’
have become virtually interchangeable. Though
some non-relational databases support SQL,
the term “SQL database” generally means a
relational database.

During the decades in which relational databases
proliferated, data entry was largely a manual
process. Times have changed. The advent of
smartphones, the ‘app economy,’ and cloud
computing in the late 2000s caused a seachange
in the workloads, query types, and traffic
patterns needed to support a global user base.

Fast forward to 2020, when people, smart-
devices, sensors, and machines emit continuous
streams of data, such as user activity, IoT and
machine-generated data, and metadata that
encompasses geolocation and telemetry. As
early as 2013, one researcher noted that 90%
of the world’s data had been generated over
the previous two years. This trend has only
accelerated. In response to this torrent of data,

many organizations have been reevaluating their
use of traditional relational databases.

Cloud computing exposed many limitations of
relational databases. RDBMSs proliferated in
an age when databases were isolated islands
with relatively stable user bases, running in a
traditional client-server configuration. RDBMSs
support arbitrary reshaping and joining of
data, but performance can be variable and
unpredictable. In restricted environments, such
variable performance characteristics could
be managed. The shift to a mobile, globally
dispersed user base caught many organizations
off guard.

During the same time period, consumer
demands shifted radically. Today, users expect
low-latency applications that deliver an
extremely responsive experience, regardless
of the user’s location. Apps that are slow
and unresponsive contribute significantly to
customer churn. Predictable performance
became more important than the semantic
flexibility afforded by RDBMSs.

Latency issues can be addressed by shifting
data closer to the customer. To meet this
need, data must be replicated across different
geographic locations. Such geographical
replication turned out to be a struggle for
RDBMSs. While RDBMSs are not fit for
distributed deployments, non-relational
databases are designed specifically to support
such topologies.

A number of alternative non-relational database
systems have been proposed, including Google’s
Bigtable (2006) and Amazon’s Dynamo (2007).
The papers for these projects paved the way
for Cassandra (2008) and MongoDB (2009).

SQL and NoSQL: Understanding the Tradeoffs between
Flexibility, Scale and Cost
When and how to migrate data from SQL to NoSQL are matters of much debate. It can
certainly be a daunting task, but when your SQL systems hit architectural limits or your
cloud provider expenses skyrocket, it’s probably time to consider a move.

4

Today, a range of mature NoSQL databases are
available to help organizations scale big data
applications.

Yet, despite their origins in a long-forgotten
technology cycle, relational SQL databases
are by no means ‘legacy’ technology. Some
SQL databases, notably PostgreSQL and
MySQL, have experienced a recent resurgence
in popularity. A new generation of NewSQL
databases, notably Google Spanner and
CockroachDB, leverage SQL as a query language
and offer a distributed architecture similar
to that of NoSQL databases yet provide full
transactional support.

ARCHITECTURAL DIFFERENCES
BETWEEN SQL AND NOSQL

ECONOMIES OF SCALE

Database administrators add capacity to RDBMS
and NoSQL databases in very different ways.
Typically, the only way to add capacity in a
relational system is to add expensive hardware,
faster CPUs, more RAM, and more advanced
networking components. This is often referred to
as ‘vertical’ scale, or ‘scaling up.’

In contrast, NoSQL databases are designed
for low latency and high resilience, being built
from the ground up to run across clusters of
distributed nodes. This architecture is often
referred to as ‘horizontal scale,’ or ‘scaling
out.’ To add capacity to a NoSQL database,
administrators simply add more nodes, a very
simple process in modern cloud environments.

In a NoSQL cluster, nodes are easy to add and
remove according to demand, providing ‘elastic’
capacity. This feature enables organizations
to align their data footprint with the needs of
the business while maintaining availability even
in the face of seasonal demand spikes, node
failures, and network outages.

The horizontal scale of NoSQL brings tradeoffs
of its own. Adding commodity hardware to
a cluster can be cheap in terms of software
licenses and subscriptions. However, as more
and more nodes are added in the pursuit of
higher throughput and lower latency, operational
overhead and administrative costs spike. Big
clusters of small instances demand more
attention and generate more alerts than small
clusters of large instances.

(Notably, some next-generation NoSQL
databases like Scylla are able to overcome this
tradeoff, scaling out in a way that can take

Key-ValueRelational Database Management
Systems (RDBMS)

Online Analytical Processing (OLAP) Cube Column store

Graph

Document

NoSQLSQL

SQL vs NoSQL

5

advantage of the powerful hardware in modern
servers and ultimately running in smaller, though
still distributed, clusters of fewer nodes.)

REPLICAS OF DATA

Replicating data across multiple nodes allows
databases to achieve higher levels of resilience.
In the RDBMS world, it’s not trivial to replicate
data across multiple instances. Relational
databases do not support replication. Instead,
they rely on external tools to extract and update
copies of datasets. These tools run batch
processes that often take hours to complete.
As a result, there is no way to ensure real-time
synchronization of data among the copies of
data.

While non-relational databases provide native
support for data replication, they follow three
basic models: multi-master databases, such as
DynamoDB, master-slave architectures, such as
MongoDB, and masterless, such as Scylla. Given
their reliance on master nodes, both multi-
master and master-slave architecture introduce
a point of failure. When a master goes down, the
process of electing a new master introduces a
brief downtime. Even though the delay may be
minimal, measured in milliseconds, that delay
can still cause SLA violations.

A masterless architecture addresses this
limitation. In these databases, data is replicated
across multiple nodes, all of which are equal.

In a masterless architecture, no single node
can bring down an entire cluster. A typical
masterless topology involves three or more
replicas for each dataset. Adopting a NoSQL
database that implements a masterless
architecture provides yet another layer
of resilience for high-volume, low-latency
applications.

APPLICATION-DRIVEN USE CASES

The rise in popularity of NoSQL databases
paralleled the adoption of agile development
and DevOps practices. Unlike RDBMSs, NoSQL
databases encourage ‘application-first’ or
API-first development patterns. Following
these models, developers first consider queries
that support the functionality specific to an
application, rather than considering the data
models and entities. This developer-friendly
architecture paved the path to the success of
the first generation of NoSQL databases.

In contrast, relational databases impose fairly
rigid, schema-based structures to data models;
tables consisting of columns and rows, which
can be joined to enable ‘relations’ among
entities. Each table typically defines an entity.
Each row in a table holds one entry, and each
column contains a specific piece of information
for that record. The relationships among tables
are clearly defined and usually enforced by
schemas and database rules.

Shards (per core)

Node

Node Node

Node

Node

Cluster

Masterless Architecture in Scylla

6

Relational data models enforce uniformity,
whereas non-relational models do not. NoSQL
databases permit multiple ‘shapes’ of data
objects to coexist, which is more flexible but
can also be more error prone. In the world
of relational databases, the schemas that
support uniformity are usually managed by
database administrators. This can sometimes
introduce friction between administrators and
development teams, resulting in long, non-agile
application development lifecycles. Such highly
structured data requires normalization to reduce
redundancy. Since the data model is based on
the entity being represented; query patterns are
a secondary consideration.

NoSQL inverts this approach, placing more
power in the hands of the developer and often
decentralizing control over data structures. Non-
relational data models are flexible, and schema
management is often delegated to application
developers, who are relatively free to adapt data
models independently. Such a decentralized
approach can accelerate development
cycles and provide a more agile approach to
addressing user requirements.

CONSISTENCY VERSUS AVAILABILITY

A consideration of the architectural differences
between relational and non-relational databases
would not be complete without the CAP
theorem. The CAP theorem was formulated by
Eric Brewer in 2000, as a way of expressing
the key tradeoffs in distributed systems. The
CAP theorem states that it is impossible for a
distributed data store to provide more than two
of the following three guarantees:

• Consistency: Every read receives either the
most recent write or an error.

• Availability: Every request receives a response
that is not an error, but with no guarantee that
it contains the most recent write.

• Partition Tolerance: The system continues to
operate even when an arbitrary number of
messages are delayed, dropped or reordered
among nodes.

CAP Theorem

Another way of putting this is that the CAP
theorem dictates that any data store brings
with it a fundamental trade-off. As such, many
databases are referred to as CP (consistent
and partition tolerance, but not available)
or AP (available and partition-tolerant, but
not consistent). In CAP terms, the critical
trade-off that distinguishes relational and non-
relational data stores is between availability and
consistency. SQL data stores sacrifice availability
in favor of data consistency. NoSQL data stores
sacrifice consistency in favor of availability.

It is important to note that the CAP theorem
has come under significant criticism. Martin
Kleppmann, in particular, has written a
comprehensive Critique of the CAP Theorem.
So, it is important to keep in mind that the
theorem is merely a simplified model for
understanding a very complex topic.

ACID VERSUS BASE CONSISTENCY

One of the defining tradeoffs between relational
and non-relational datastores is in the type
of consistency that they provide. In simple
terms, RDBMS provides strong consistency,
while NoSQL databases provide a weaker form.
Consistency in general refers to a database’s
ability to process concurrent transactions while
preserving the integrity of the data. Somewhat
confusingly, ‘consistency’ as defined in the
CAP theorem has a different, though related,
meaning than the consistency discussed in this
section. The definition used by Brewer in the
CAP theorem derives from distributed systems
theory, while the definition used in this section
derives from database theory.

Availability

SCYLLA

Consistency Partition-
Tolerance

A

PC

7

In simple terms, consistency is a guarantee that
a read should return the result of the latest
successful write. This seems simple, but such
a guarantee is incredibly difficult to deliver
without impacting the performance of the
system as a whole. In a relational database,
a single data item is actually split across
independent registers that must agree with one
another. Thus, a single database write is actually
decomposed into several small writes to these
registers, which must be completed and visible
when the read is executed. With concurrent
operations running against the database, the
semblance of order between the group of
sub-operations needs to be maintained; the
concurrent operations must be atomic. ACID
consistency means the rules of relations must
be satisfied. In a globally distributed database
topology, which involves multiple clusters
each containing many nodes the problem
of consistency becomes exponentially more
complex.

In general, relational databases that support
‘strong consistency’ provide ‘ACID guarantees.’
ACID is an acronym designed to capture the
essential elements of a strongly consistent
database. The components of the ACID are as
follows:

• Atomicity: Guarantees that each transaction
is treated as a single “unit”, which either
succeeds completely or fails completely.

• Consistency: Guarantees that each transaction
only changes affected data in permitted ways.

• Isolation: Guarantees that the concurrent
execution of transactions leaves the database
in the same state that would have been
obtained if the transactions were executed
sequentially.

• Durability: The transactions results are
permanent, even in the event of system failure.

ACID compliance is a complex and often
contested topic. In fact, one popular system
of analysis, the Jepsen test, is dedicated to
verifying vendor consistency claims.

By their nature, ACID-compliant databases are
generally slow, difficult to scale, and expensive

to run and maintain. It should be noted some
RDBMS systems enable performance to be
improved by relaxing ACID guarantees. Still,
all SQL databases are ACID compliant to
varying degrees, and as such, they all share
this downside. The practical effect of ACID
compliance is to make it extraordinarily difficult
and expensive to achieve resilient, distributed
SQL database deployments.

In contrast to RDBMS’ ACID guarantees, NoSQL
databases provide so-called ‘BASE guarantees.’
BASE enables availability and relaxes the
stringent consistency. The acronym BASE
designates:

• Basic Availability: Data is available most of
the time, even during a partial system failure.

• Soft state: Individual data items are
independent and do not have to be consistent
with each other.

• Eventual consistency: Data will become
consistent at some unspecified point in the
future.

As such, NoSQL databases sacrifice a degree
of consistency in order to increase availability.
Rather than providing strong consistency,
NoSQL databases generally provide eventual
consistency. A data store that provides
BASE guarantees can occasionally fail to
return the result of the latest write, providing
different answers to applications making
requests. Developers building applications
against eventually consistent data stores
often implement consistency checks in their
application code.

Lightweight transactions
In a traditional SQL RDBMS, a “transaction”
is a logical unit of work — a group of tasks
that provides the ACID guarantees discussed
above. To compensate for relaxed consistency,
some NoSQL databases offer ‘lightweight
transactions’ (LWTs).

Lightweight transactions are limited to a single
conditional statement, which enables an atomic
“compare and set” operation. Such an operation
checks whether a condition is true before it
conducts the transaction. If the condition is not

8

met, the transaction is not executed. (For this
reason, LWTs are sometimes called ‘conditional
statements’). LWTs do not truly lock the
database for the duration of the transaction;
they only ‘lock’ a single cell or row. LWTs
leverage a consensus protocol such as Paxos
to ensure that all nodes in the cluster agree
the change is committed. In this way, LWTs can
provide sufficient consistency for applications
that require the availability and resilience of a
distributed database.

QUERY LANGUAGES: SQL VERSUS CQL

As we’ve noted, relational databases are defined
in part by their use of the Structured Query
Language (SQL). In contrast, NoSQL databases
employ a host of alternative query languages
that have been designed to support diverse
application use cases. A partial list includes
MongoDB Query Language (MQL), Couchbase’s
N1QL, Elasticsearch’s Query DSL, Microsoft
Azure’s Cosmos DB query language, and
Cassandra Query Language (CQL).

In this paper, we will focus on the most widely
used NoSQL query language, CQL. While CQL
is the primary language for communicating
with Apache Cassandra, it is also supported by
a range of familiar NoSQL databases. Common
CQL-compliant databases include Scylla,
DataStax Enterprise, Microsoft’s cloud-native
Azure Cosmos DB, and Amazon Keyspaces.

CQL’s similarity to SQL enables developers
to move between the languages with relative
ease. A few distinctions between SQL and CQL
include:

Joins
SQL and CQL share similar statements to store
and modify data, such as Create, Alter, Drop, and
Truncate commands, but unlike SQL, CQL is not
designed to support joins between tables. In CQL,
relations are implemented within the application,
rather than within the database query.

Values versus objects
Query results are also returned differently. SQL
natively returns data-typed values, usually to
be read into an object one field at a time. In
contrast, CQL natively returns complete objects,
often serialized in extensible markup language
(XML) or Javascript object notation (JSON). This
makes applications responsible for parsing these
objects to obtain the desired result of a query.

Scaling characteristics
In NoSQL, data is stored across nodes in a
cluster based on a token range, which is a
hashed value of the primary key. By using token
ranges, NoSQL databases enable objects to
be stored on different nodes. CQL queries are
inherently more scalable than SQL queries,
having been specifically designed to query
across a horizontally distributed cluster of
servers, rather than a single database at a time.

CONSIDERATIONS FOR SQL TO NOSQL
MIGRATIONS

Data models
SQL data models follow a normalized design;
different but related pieces of information are
stored in ‘relations,’ which are separate logical
tables connected by joins. NoSQL databases
use denormalized data models, in which
redundant copies of data are added as needed
by the consuming applications. The point of
denormalization is to increase performance
and lower latency since the joins involved
in normalized data models can introduce
significant performance overhead, especially in
distributed topologies.

When migrating from SQL to NoSQL, the
primary key in the relational table becomes the
partition key in the NoSQL table. If the RDBMS
table must be joined to additional tables to
retrieve the business object, those closely
related tables should combine into a single
NoSQL table. The NoSQL cluster ordering key
determines the physical order of records, so it
should be a unique value (often a composite
value) that would be useful for searching.

9

Of course, partition keys and cluster ordering
keys are not the only way data is queried.
Additional indexes on the relational table
provide the basis for secondary indexes or
materialized views, in order to support an
application’s search and filtering requirements.

QUERY PATTERNS

Relational databases are organized around data
structures and relationships. In contrast, NoSQL
databases are organized around query patterns.
As noted above, the NoSQL partition key can
be mapped to a primary key in an RDBMS.

Partitions

fead97e9 4d77 40c9-ba15-
c45478542e20

2011 02 03 04:05:05:
heart_rate 80

2011 02 03 04:05:10:
heart_rate 89

2011 12 17 09:21:00:
heart_rate 84

Sorted by tim
e

268e074a-a801476c-8db5-
276eb2283b03

2011 02 03 04:05:00:
heart_rate 81

47045a b-fd1144c6 9d0f-
82428434e887

2011 02 03 04:05:00:
heart_rate 83

Rows

Partition Key Clustering Key Value

Example of Partition

Project
Code

PC010

PC010

PC010

PC011

PC011

PC011

PC012

PC012

PC012

Project
Name

Reservation
System

Reservation
System

Reservation
System

HR System

HR System

HR System

Attendance
System

Attendance
System

Attendance
System

Project
Manager

Mr. Ajay

Mr. Ajay

Mr. Ajay

Mrs. Charu

Mrs. Charu

Mrs. Charu

Mr. Rajesh

Mr. Rajesh

Mr. Rajesh

Project
Budget

120500

120500

120500

500500

500500

500500

710700

710700

710700

Employee
No.

$100

$101

$102

$103

$104

$315

$137

$218

$109

Employee
Name

Mohan

Vipul

Riyaz

Pavan

Jitendra

Pooja

Rahul

Avneesh

Vikas

Department
No.

D03

D02

D01

D03

D02

D01

D03

D02

D01

Department
Name

Database

Testing

IT

Database

Testing

IT

Database

Testing

IT

Hourly
Rate

21.00

16.50

22.00

18.50

17.00

23.50

21.50

15.50

20.50

Denormalized data

10

Secondary keys and indexes can be added
later. A UNIQUE constraint in a SQL database
becomes a good candidate for a cluster
ordering key in NoSQL.

Materialized views
Common, frequent queries against a database
can become expensive. When the same
query is run again and again, it makes sense
to ‘virtualize’ the query. Materialized views
address this need by enabling common queries
to be represented by a database object that is
continuously updated as data changes.

Secondary indexes
Secondary indexes enable queries to run against
the main table using indexed values, as in an
RDBMS, but it is actually implemented as a
materialized view. The application is isolated
from having to query the secondary index
directly.

Referential integrity
Referential integrity ensures that no references
between tables are broken, as occurs when a
foreign key references a non-existent entry. A
lack of referential integrity in a database can
result in incomplete query responses, usually
failing quietly, with no indication of an error.
Relational databases are designed to enforce
referential integrity. NoSQL databases shift the
responsibility for making sure that objects are
complete and correct to the API, which checks
entities when loading or saving them.

MIGRATION TO NOSQL

Hybrid conversion to NoSQL
Rather than migrating an entire RDBMS to a
NoSQL database, some applications benefit
from leaving some data on a relational database,
while moving a subset of data to a NoSQL
database. A hybrid solution that spans two
database types can offer the best of both
worlds. For example, in some deployments,
customer account information, which is
infrequently updated, will be stored in an
RDBMS, while transactional or streaming data,
such as IoT sensor data or telemetry, might be
stored in a NoSQL database. Large, growing

tables and storage for streaming data, especially
in the context of event-driven architecture (EDA),
are good candidates to migrate to NoSQL.

Data forklifting
Tools like Apache Kafka can facilitate the
process of migrating existing data from an
RDBMS to NoSQL. Depending on the complexity
of the conversion, more comprehensive
operations may be needed. Tools such as
Apache Spark, a lightning-fast unified analytics
engine for big data and machine learning, can
be used to enable such data conversions.

For key-value migrations, the forklifting process
is trivial. For a document model with hierarchical
entities (order lines, for example) the process of
building the new value from the old table joins
can become much more involved.

Data validation
Following a migration, teams need to validate
that data was migrated in the correct form.
Missing or truncated data, which has the
potential to degrade system capabilities,
may not be immediately obvious, making
comprehensive testing essential.

During the validation process, the old and
new data stores can be run in parallel; new
data is added or updated in both datastores
simultaneously. Reports can be run against both
systems and compared for accuracy. Running
some queries across a large range of data will
help to find differences that could be magnified
across aggregated data.

SQL AND NOSQL DATABASE
ADMINISTRATION

Performance Monitoring and Tuning
As development teams become smaller and
more agile, they are also increasingly sensitive
to database maintenance and administrative
overhead. On application-focused teams,
database experts are becoming less and less
common. Traditional database administration
and maintenance responsibilities are often
rolled into ‘full-stack’ developer and DevOps
positions. Operational overhead is often in direct
competition with product development efforts.

11

For these reasons, the choice of a database
must take into account the expertise of the
organization and the need or desire to build up
internal expertise around a given technology.

The ongoing maintenance of a database
requires close monitoring and frequent
performance tuning. As datasets grow and
application traffic increases, administrators
need to keep a close eye on disk space, CPU
consumption, memory allocation, and index
fragmentation. Performance adjustments are
proprietary to each database and often require
significant dedicated expertise.

A database administrator never wants to
see database utilization spike over 100%.
Therefore, administrators must provide a buffer
against traffic spikes by ‘overprovisioning’
hardware. The degree to which hardware must
be overprovisioned depends on the scaling
characteristics of the database. In general,
NoSQL databases have a flatter and more
predictable performance curve. Therefore,
NoSQL databases tend to require administrators
to minimize overprovisioning without
compromising safety.

Performance tuning can be used to minimize
overprovisioning, but it can only go so far in
preventing full utilization. When performance
tuning hits a wall, the database must be scaled;
the RDBMS administrator has two choices. First,
the dataset can be ‘sharded,’ such that a subset
of the data is stored on each node. Second, the
administrator can add more powerful hardware,
increasing the capacity of hardware by adding
more powerful CPUs, more storage, and faster
networking components.

Often, teams do both, sharding and scaling,
which adds both complexity and cost. The
vertical scale adds significant cost at each step
and eventually runs up against the physical
limits of the network.

NoSQL databases make it easier for
administrators to monitor and manage database
deployments. First, they tend to be capable of
running at higher levels of utilization than most
RDBMSs. Second, capacity can be increased

by adding new nodes running on inexpensive
commodity servers. But within the family of
NoSQL databases, these two capabilities vary
considerably.

Some NoSQL databases also require expert
administrators with detailed knowledge of
proprietary tuning settings. Others adopt a
more automated approach that minimizes
tricky manual tuning parameters, enabling
non-specialties to administer and operate the
database.

Likewise, some NoSQL databases take a
horizontal scale to an extreme, often requiring
huge clusters to achieve the required
performance targets and maintain SLAs.
Sometimes these clusters run into the tens
of thousands of nodes. While providing a
frictionless path to scale, this approach also
increases operational overhead. The ideal non-
relational database can efficiently use powerful
modern hardware, while also enabling clusters
to grow and shrink elastically with minimal
administrator intervention.

Backup and Recovery
In both RDBMS and NoSQL worlds, data
can become corrupt due to hardware issues,
software bugs, and user errors. The resilient
architecture of NoSQL databases typically
provides a buffer against data loss. Still,
administrators need to be able to restore the
data to a known ‘good state.’ A backup and
recovery plan is essential, being built around
two core targets: Recovery Point Objective
(RPO) and Recovery Time Objective (RTO).

• RPO is defined by the age of data in backup
storage needed to resume normal operations
after a failure.

• RTO defines the time needed to restore the
system to a normal state.

A classic database restore plan might include
a single daily backup along with differential
backups every hour to support a one-hour RPO.
For a large database, the recovery time for a
full restore can take hours to days, and every
backup takes additional storage space.

12

Node Repair and Replacement
Given the distributed nature of NoSQL clusters,
nodes occasionally fall out-of-sync. To address
this issue, NoSQL databases provide tools to
bring out-of-sync nodes up-to-date using a
repair procedure. Repairs populate the node to
match the data on the other replicas. Sometimes
a node can fall so far out-of-sync with the
cluster that it needs to be replaced. As they are
bootstrapped into the cluster, fresh nodes must
stream a copy of the whole dataset; for large
datasets, such a refresh can take an inordinate
amount of time. NoSQL databases perform such
operations using a variety of algorithms, some
of which are more efficient than others. Thus,
some NoSQL databases recover more quickly
and predictably than others.

SCYLLA NOSQL: SCALE-UP OF
RDBMS AND HIGH AVAILABILITY
OF NON-RELATIONAL
In this document, we have discussed a set of
trade offs between SQL and NoSQL databases.
If your use case requires ACID guarantees,
then NoSQL might not be an option. But

many modern, cloud-native applications are
better suited to databases that support high
availability and a developer-centric data
model. The decision is based on business
considerations: how important is each
transaction? Where the aggregate scale and
speed of all transactions outweighs the specific
correctness of any single query, then NoSQL
is the best fit.

With this fundamental tradeoff in mind, one
database, Scylla, has been designed from
the ground-up to overcome one of the key
limitations of the first generation of NoSQL
databases. Using a unique, close-to-the-
hardware design, Scylla combines the scale
up capabilities of traditional RDBMSs with the
high availability and resilience of non-relational
databases. The result is a database that
extracts maximum performance from modern
hardware to deliver predictable, low latency,
while also minimizing operational overhead and
significantly reducing TCO.

Many IT organizations have followed the
principles in this paper and have migrated
successfully from RDBMS to the Scylla NoSQL
database.

SQL NoSQL

Orientation Relational Generally non-relational

Schema Strict and rigid schema design and data
normalization

Loose and more varied designs for
unstructured and semi-structured data;
data is generally denormalized

Language Structured Query Language (SQL) for
defining, reading and manipulating data.
Supports JOIN statements to relate data
across tables.

There are different languages for querying,
some quite similar to SQL, such as
Cassandra Query Language (CQL) for
wide column databases, or others radically
different, such as using object-oriented
JSON for document databases.

Scalability Vertically scalable. Loads on a single server
can be increased with CPU, RAM or SSD.

Generally designed for horizontal
scalability. Increased traffic can be handled
by adding more servers in the database.
This is useful for large and frequently
changing datasets.

Structure Table-based, which is efficient for
applications using multi-row transactions
or systems that were built with a relational
structure.

NoSQL database structure is variable, and
can be based on documents, key-value
pairs, graph structures or wide-column
stores.

Copyright © 2020 ScyllaDB Inc. All rights reserved. All trademarks or
registered trademarks used herein are property of their respective owners.

United States Headquarters
2445 Faber Place, Suite 200
Palo Alto, CA 94303 U.S.A.
Email: info@scylladb.com

Israel Headquarters
11 Galgalei Haplada
Herzelia, Israel

SCYLLADB.COM

ABOUT SCYLLADB

Scylla is the real-time big data database. API-compatible
with Apache Cassandra and Amazon DynamoDB, Scylla
embraces a shared-nothing approach that increases
throughput and storage capacity as much as 10X.
Comcast, Discord, Disney+ Hotstar, Grab, Medium,
Starbucks, Ola Cabs, Samsung, IBM, Investing.com and
many more leading companies have adopted Scylla to
realize order-of-magnitude performance improvements
and reduce hardware costs. Scylla’s database is available
as an open source project, an enterprise edition and a
fully managed database as a service. ScyllaDB was
founded by the team responsible for the KVM hypervisor.
For more information: ScyllaDB.com

