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SQL VERSUS NOSQL BASICS
Since their invention in 1970 by Edgar Codd, 
relational databases have served as the default 
data store for almost every IT organization, large 
or small. Today, the most iconic and familiar 
relational databases include IBM DB2, Oracle 
Database, Microsoft SQL Server, PostgreSQL, 
and MySQL. 

Structured Query Language, or SQL, was 
invented at IBM soon after the introduction of 
the relational database. Since its introduction, 
SQL has become the most widely used 
database language, used for querying data, data 
manipulation (insert, update and delete), data 
definition (schema creation and modification), 
and data access control. Though the terms refer 
to different technologies, ‘SQL’ and ‘RDBMS’ 
have become virtually interchangeable. Though 
some non-relational databases support SQL, 
the term “SQL database” generally means a 
relational database. 

During the decades in which relational databases 
proliferated, data entry was largely a manual 
process. Times have changed. The advent of  
smartphones, the ‘app economy,’ and cloud 
computing in the late 2000s caused a seachange 
in the workloads, query types, and traffic 
patterns needed to support a global user base.

Fast forward to 2020, when people, smart-
devices, sensors, and machines emit continuous 
streams of data, such as user activity, IoT and 
machine-generated data, and metadata that 
encompasses geolocation and telemetry. As 
early as 2013, one researcher noted that 90% 
of the world’s data had been generated over 
the previous two years. This trend has only 
accelerated. In response to this torrent of data, 

many organizations have been reevaluating their 
use of traditional relational databases. 

Cloud computing exposed many limitations of 
relational databases. RDBMSs proliferated in 
an age when databases were isolated islands 
with relatively stable user bases, running in a 
traditional client-server configuration. RDBMSs 
support arbitrary reshaping and joining of 
data, but performance can be variable and 
unpredictable. In restricted environments, such 
variable performance characteristics could 
be managed. The shift to a mobile, globally 
dispersed user base caught many organizations 
off guard. 

During the same time period, consumer 
demands shifted radically. Today, users expect 
low-latency applications that deliver an 
extremely responsive experience, regardless 
of the user’s location. Apps that are slow 
and unresponsive contribute significantly to 
customer churn. Predictable performance 
became more important than the semantic 
flexibility afforded by RDBMSs.

Latency issues can be addressed by shifting 
data closer to the customer. To meet this 
need, data must be replicated across different 
geographic locations. Such geographical 
replication turned out to be a struggle for 
RDBMSs. While RDBMSs are not fit for 
distributed deployments, non-relational 
databases are designed specifically to support 
such topologies.

A number of alternative non-relational database 
systems have been proposed, including Google’s 
Bigtable (2006) and Amazon’s Dynamo (2007). 
The papers for these projects paved the way 
for Cassandra (2008) and MongoDB (2009). 

SQL and NoSQL: Understanding the Tradeoffs between 
Flexibility, Scale and Cost
When and how to migrate data from SQL to NoSQL are matters of much debate. It can 
certainly be a daunting task, but when your SQL systems hit architectural limits or your 
cloud provider expenses skyrocket, it’s probably time to consider a move.
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Today, a range of mature NoSQL databases are 
available to help organizations scale big data 
applications. 

Yet, despite their origins in a long-forgotten 
technology cycle, relational SQL databases 
are by no means ‘legacy’ technology. Some 
SQL databases, notably PostgreSQL and 
MySQL, have experienced a recent resurgence 
in popularity. A new generation of NewSQL 
databases, notably Google Spanner and 
CockroachDB, leverage SQL as a query language 
and offer a distributed architecture similar 
to that of NoSQL databases yet provide full 
transactional support.

ARCHITECTURAL DIFFERENCES 
BETWEEN SQL AND NOSQL

ECONOMIES OF SCALE

Database administrators add capacity to RDBMS 
and NoSQL databases in very different ways. 
Typically, the only way to add capacity in a 
relational system is to add expensive hardware, 
faster CPUs, more RAM, and more advanced 
networking components. This is often referred to 
as ‘vertical’ scale, or ‘scaling up.’ 

In contrast, NoSQL databases are designed 
for low latency and high resilience, being built 
from the ground up to run across clusters of 
distributed nodes. This architecture is often 
referred to as ‘horizontal scale,’ or ‘scaling 
out.’ To add capacity to a NoSQL database, 
administrators simply add more nodes, a very 
simple process in modern cloud environments.

In a NoSQL cluster, nodes are easy to add and 
remove according to demand, providing ‘elastic’ 
capacity. This feature enables organizations 
to align their data footprint with the needs of 
the business while maintaining availability even 
in the face of seasonal demand spikes, node 
failures, and network outages.

The horizontal scale of NoSQL brings tradeoffs 
of its own. Adding commodity hardware to 
a cluster can be cheap in terms of software 
licenses and subscriptions. However, as more 
and more nodes are added in the pursuit of 
higher throughput and lower latency, operational 
overhead and administrative costs spike. Big 
clusters of small instances demand more 
attention and generate more alerts than small 
clusters of large instances.

(Notably, some next-generation NoSQL 
databases like Scylla are able to overcome this 
tradeoff, scaling out in a way that can take 
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advantage of the powerful hardware in modern 
servers and ultimately running in smaller, though 
still distributed, clusters of fewer nodes.)

REPLICAS OF DATA

Replicating data across multiple nodes allows 
databases to achieve higher levels of resilience. 
In the RDBMS world, it’s not trivial to replicate 
data across multiple instances. Relational 
databases do not support replication. Instead, 
they rely on external tools to extract and update 
copies of datasets. These tools run batch 
processes that often take hours to complete. 
As a result, there is no way to ensure real-time 
synchronization of data among the copies of 
data. 

While non-relational databases provide native 
support for data replication, they follow three 
basic models: multi-master databases, such as 
DynamoDB, master-slave architectures, such as 
MongoDB, and masterless, such as Scylla. Given 
their reliance on master nodes, both multi-
master and master-slave architecture introduce 
a point of failure. When a master goes down, the 
process of electing a new master introduces a 
brief downtime. Even though the delay may be 
minimal, measured in milliseconds, that delay 
can still cause SLA violations.

A masterless architecture addresses this 
limitation. In these databases, data is replicated 
across multiple nodes, all of which are equal. 

In a masterless architecture, no single node 
can bring down an entire cluster. A typical 
masterless topology involves three or more 
replicas for each dataset. Adopting a NoSQL 
database that implements a masterless 
architecture provides yet another layer 
of resilience for high-volume, low-latency 
applications.

APPLICATION-DRIVEN USE CASES

The rise in popularity of NoSQL databases 
paralleled the adoption of agile development 
and DevOps practices. Unlike RDBMSs, NoSQL 
databases encourage ‘application-first’ or 
API-first development patterns. Following 
these models, developers first consider queries 
that support the functionality specific to an 
application, rather than considering the data 
models and entities. This developer-friendly 
architecture paved the path to the success of 
the first generation of NoSQL databases.

In contrast, relational databases impose fairly 
rigid, schema-based structures to data models; 
tables consisting of columns and rows, which 
can be joined to enable ‘relations’ among 
entities. Each table typically defines an entity. 
Each row in a table holds one entry, and each 
column contains a specific piece of information 
for that record. The relationships among tables 
are clearly defined and usually enforced by 
schemas and database rules.

Shards (per core)

Node

Node Node

Node

Node

Cluster

Masterless Architecture in Scylla
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Relational data models enforce uniformity, 
whereas non-relational models do not. NoSQL 
databases permit multiple ‘shapes’ of data 
objects to coexist, which is more flexible but 
can also be more error prone. In the world 
of relational databases, the schemas that 
support uniformity are usually managed by 
database administrators. This can sometimes 
introduce friction between administrators and 
development teams, resulting in long, non-agile 
application development lifecycles. Such highly 
structured data requires normalization to reduce 
redundancy. Since the data model is based on 
the entity being represented; query patterns are 
a secondary consideration. 

NoSQL inverts this approach, placing more 
power in the hands of the developer and often 
decentralizing control over data structures. Non-
relational data models are flexible, and schema 
management is often delegated to application 
developers, who are relatively free to adapt data 
models independently. Such a decentralized 
approach can accelerate development 
cycles and provide a more agile approach to 
addressing user requirements. 

CONSISTENCY VERSUS AVAILABILITY

A consideration of the architectural differences 
between relational and non-relational databases 
would not be complete without the CAP 
theorem. The CAP theorem was formulated by 
Eric Brewer in 2000, as a way of expressing 
the key tradeoffs in distributed systems. The 
CAP theorem states that it is impossible for a 
distributed data store to provide more than two 
of the following three guarantees:

• Consistency: Every read receives either the 
most recent write or an error. 

• Availability: Every request receives a response 
that is not an error, but with no guarantee that 
it contains the most recent write. 

• Partition Tolerance: The system continues to 
operate even when an arbitrary number of 
messages are delayed, dropped or reordered 
among nodes.

CAP Theorem

Another way of putting this is that the CAP 
theorem dictates that any data store brings 
with it a fundamental trade-off. As such, many 
databases are referred to as CP (consistent 
and partition tolerance, but not available) 
or AP (available and partition-tolerant, but 
not consistent). In CAP terms, the critical 
trade-off that distinguishes relational and non-
relational data stores is between availability and 
consistency. SQL data stores sacrifice availability 
in favor of data consistency. NoSQL data stores 
sacrifice consistency in favor of availability. 

It is important to note that the CAP theorem 
has come under significant criticism. Martin 
Kleppmann, in particular, has written a 
comprehensive Critique of the CAP Theorem. 
So, it is important to keep in mind that the 
theorem is merely a simplified model for 
understanding a very complex topic.

ACID VERSUS BASE CONSISTENCY

One of the defining tradeoffs between relational 
and non-relational datastores is in the type 
of consistency that they provide. In simple 
terms, RDBMS provides strong consistency, 
while NoSQL databases provide a weaker form. 
Consistency in general refers to a database’s 
ability to process concurrent transactions while 
preserving the integrity of the data. Somewhat 
confusingly, ‘consistency’ as defined in the 
CAP theorem has a different, though related, 
meaning than the consistency discussed in this 
section. The definition used by Brewer in the 
CAP theorem derives from distributed systems 
theory, while the definition used in this section 
derives from database theory.

Availability
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In simple terms, consistency is a guarantee that 
a read should return the result of the latest 
successful write. This seems simple, but such 
a guarantee is incredibly difficult to deliver 
without impacting the performance of the 
system as a whole. In a relational database, 
a single data item is actually split across 
independent registers that must agree with one 
another. Thus, a single database write is actually 
decomposed into several small writes to these 
registers, which must be completed and visible 
when the read is executed. With concurrent 
operations running against the database, the 
semblance of order between the group of 
sub-operations needs to be maintained; the 
concurrent operations must be atomic. ACID 
consistency means the rules of relations must 
be satisfied. In a globally distributed database 
topology, which involves multiple clusters 
each containing many nodes the problem 
of consistency becomes exponentially more 
complex.

In general, relational databases that support 
‘strong consistency’ provide ‘ACID guarantees.’ 
ACID is an acronym designed to capture the 
essential elements of a strongly consistent 
database. The components of the ACID are as 
follows:

• Atomicity: Guarantees that each transaction 
is treated as a single “unit”, which either 
succeeds completely or fails completely.

• Consistency: Guarantees that each transaction 
only changes affected data in permitted ways.

• Isolation: Guarantees that the concurrent 
execution of transactions leaves the database 
in the same state that would have been 
obtained if the transactions were executed 
sequentially.

• Durability: The transactions results are 
permanent, even in the event of system failure.

ACID compliance is a complex and often 
contested topic. In fact, one popular system 
of analysis, the Jepsen test, is dedicated to 
verifying vendor consistency claims. 

By their nature, ACID-compliant databases are 
generally slow, difficult to scale, and expensive 

to run and maintain. It should be noted some 
RDBMS systems enable performance to be 
improved by relaxing ACID guarantees. Still, 
all SQL databases are ACID compliant to 
varying degrees, and as such, they all share 
this downside. The practical effect of ACID 
compliance is to make it extraordinarily difficult 
and expensive to achieve resilient, distributed 
SQL database deployments.

In contrast to RDBMS’ ACID guarantees, NoSQL 
databases provide so-called ‘BASE guarantees.’ 
BASE enables availability and relaxes the 
stringent consistency. The acronym BASE 
designates:

• Basic Availability: Data is available most of 
the time, even during a partial system failure.

• Soft state: Individual data items are 
independent and do not have to be consistent 
with each other.

• Eventual consistency: Data will become 
consistent at some unspecified point in the 
future. 

As such, NoSQL databases sacrifice a degree 
of consistency in order to increase availability. 
Rather than providing strong consistency, 
NoSQL databases generally provide eventual 
consistency. A data store that provides 
BASE guarantees can occasionally fail to 
return the result of the latest write, providing 
different answers to applications making 
requests. Developers building applications 
against eventually consistent data stores 
often implement consistency checks in their 
application code.

Lightweight transactions
In a traditional SQL RDBMS, a “transaction” 
is a logical unit of work — a group of tasks 
that provides the ACID guarantees discussed 
above. To compensate for relaxed consistency, 
some NoSQL databases offer ‘lightweight 
transactions’ (LWTs).

Lightweight transactions are limited to a single 
conditional statement, which enables an atomic 
“compare and set” operation. Such an operation 
checks whether a condition is true before it 
conducts the transaction. If the condition is not 
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met, the transaction is not executed. (For this 
reason, LWTs are sometimes called ‘conditional 
statements’). LWTs do not truly lock the 
database for the duration of the transaction; 
they only ‘lock’ a single cell or row. LWTs 
leverage a consensus protocol such as Paxos 
to ensure that all nodes in the cluster agree 
the change is committed. In this way, LWTs can 
provide sufficient consistency for applications 
that require the availability and resilience of a 
distributed database.

QUERY LANGUAGES: SQL VERSUS CQL

As we’ve noted, relational databases are defined 
in part by their use of the Structured Query 
Language (SQL). In contrast, NoSQL databases 
employ a host of alternative query languages 
that have been designed to support diverse 
application use cases. A partial list includes 
MongoDB Query Language (MQL), Couchbase’s 
N1QL, Elasticsearch’s Query DSL, Microsoft 
Azure’s Cosmos DB query language, and 
Cassandra Query Language (CQL).

In this paper, we will focus on the most widely 
used NoSQL query language, CQL. While CQL 
is the primary language for communicating 
with Apache Cassandra, it is also supported by 
a range of familiar NoSQL databases. Common 
CQL-compliant databases include Scylla, 
DataStax Enterprise, Microsoft’s cloud-native 
Azure Cosmos DB, and Amazon Keyspaces. 

CQL’s similarity to SQL enables developers 
to move between the languages with relative 
ease. A few distinctions between SQL and CQL 
include: 

Joins
SQL and CQL share similar statements to store 
and modify data, such as Create, Alter, Drop, and 
Truncate commands, but unlike SQL, CQL is not 
designed to support joins between tables. In CQL, 
relations are implemented within the application, 
rather than within the database query.

Values versus objects
Query results are also returned differently. SQL 
natively returns data-typed values, usually to 
be read into an object one field at a time. In 
contrast, CQL natively returns complete objects, 
often serialized in extensible markup language 
(XML) or Javascript object notation (JSON). This 
makes applications responsible for parsing these 
objects to obtain the desired result of a query.

Scaling characteristics
In NoSQL, data is stored across nodes in a 
cluster based on a token range, which is a 
hashed value of the primary key. By using token 
ranges, NoSQL databases enable objects to 
be stored on different nodes. CQL queries are 
inherently more scalable than SQL queries, 
having been specifically designed to query 
across a horizontally distributed cluster of 
servers, rather than a single database at a time. 

CONSIDERATIONS FOR SQL TO NOSQL 
MIGRATIONS

Data models
SQL data models follow a normalized design; 
different but related pieces of information are 
stored in ‘relations,’ which are separate logical 
tables connected by joins. NoSQL databases 
use denormalized data models, in which 
redundant copies of data are added as needed 
by the consuming applications. The point of 
denormalization is to increase performance 
and lower latency since the joins involved 
in normalized data models can introduce 
significant performance overhead, especially in 
distributed topologies.

When migrating from SQL to NoSQL, the 
primary key in the relational table becomes the 
partition key in the NoSQL table. If the RDBMS 
table must be joined to additional tables to 
retrieve the business object, those closely 
related tables should combine into a single 
NoSQL table. The NoSQL cluster ordering key 
determines the physical order of records, so it 
should be a unique value (often a composite 
value) that would be useful for searching.
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Of course, partition keys and cluster ordering 
keys are not the only way data is queried. 
Additional indexes on the relational table 
provide the basis for secondary indexes or 
materialized views, in order to support an 
application’s search and filtering requirements.

QUERY PATTERNS

Relational databases are organized around data 
structures and relationships. In contrast, NoSQL 
databases are organized around query patterns. 
As noted above, the NoSQL partition key can 
be mapped to a primary key in an RDBMS. 

Partitions

fead97e9 4d77 40c9-ba15-
c45478542e20

2011 02 03 04:05:05: 
heart_rate 80

2011 02 03 04:05:10: 
heart_rate 89

2011 12 17 09:21:00: 
heart_rate 84

Sorted by tim
e

268e074a-a801476c-8db5- 
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2011 02 03 04:05:00: 
heart_rate 81
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82428434e887
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Rows
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Example of Partition

Project
Code

PC010

PC010

PC010

PC011

PC011
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PC012

PC012

PC012

Project
Name

Reservation
System

Reservation
System

Reservation
System

HR System

HR System

HR System

Attendance
System

Attendance
System

Attendance
System

Project
Manager

Mr. Ajay

Mr. Ajay

Mr. Ajay

Mrs. Charu

Mrs. Charu

Mrs. Charu

Mr. Rajesh

Mr. Rajesh

Mr. Rajesh

Project
Budget

120500

120500

120500

500500

500500

500500

710700

710700

710700

Employee
No.

$100

$101

$102

$103

$104

$315

$137

$218

$109

Employee
Name

Mohan

Vipul

Riyaz

Pavan

Jitendra

Pooja

Rahul

Avneesh

Vikas

Department
No.

D03

D02

D01

D03

D02

D01

D03

D02

D01

Department
Name

Database

Testing

IT

Database

Testing

IT

Database

Testing

IT

Hourly
Rate

21.00

16.50

22.00

18.50

17.00

23.50

21.50

15.50

20.50

Denormalized data
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Secondary keys and indexes can be added 
later. A UNIQUE constraint in a SQL database 
becomes a good candidate for a cluster 
ordering key in NoSQL.

Materialized views
Common, frequent queries against a database 
can become expensive. When the same 
query is run again and again, it makes sense 
to ‘virtualize’ the query. Materialized views 
address this need by enabling common queries 
to be represented by a database object that is 
continuously updated as data changes. 

Secondary indexes
Secondary indexes enable queries to run against 
the main table using indexed values, as in an 
RDBMS, but it is actually implemented as a 
materialized view. The application is isolated 
from having to query the secondary index 
directly.

Referential integrity
Referential integrity ensures that no references 
between tables are broken, as occurs when a 
foreign key references a non-existent entry. A 
lack of referential integrity in a database can 
result in incomplete query responses, usually 
failing quietly, with no indication of an error. 
Relational databases are designed to enforce 
referential integrity. NoSQL databases shift the 
responsibility for making sure that objects are 
complete and correct to the API, which checks 
entities when loading or saving them.

MIGRATION TO NOSQL

Hybrid conversion to NoSQL
Rather than migrating an entire RDBMS to a 
NoSQL database, some applications benefit 
from leaving some data on a relational database, 
while moving a subset of data to a NoSQL 
database. A hybrid solution that spans two 
database types can offer the best of both 
worlds. For example, in some deployments, 
customer account information, which is 
infrequently updated, will be stored in an 
RDBMS, while transactional or streaming data, 
such as IoT sensor data or telemetry, might be 
stored in a NoSQL database. Large, growing 

tables and storage for streaming data, especially 
in the context of event-driven architecture (EDA),  
are good candidates to migrate to NoSQL. 

Data forklifting
Tools like Apache Kafka can facilitate the 
process of migrating existing data from an 
RDBMS to NoSQL. Depending on the complexity 
of the conversion, more comprehensive 
operations may be needed. Tools such as 
Apache Spark, a lightning-fast unified analytics 
engine for big data and machine learning, can 
be used to enable such data conversions.

For key-value migrations, the forklifting process 
is trivial. For a document model with hierarchical 
entities (order lines, for example) the process of 
building the new value from the old table joins 
can become much more involved.

Data validation
Following a migration, teams need to validate 
that data was migrated in the correct form. 
Missing or truncated data, which has the 
potential to degrade system capabilities, 
may not be immediately obvious, making 
comprehensive testing essential.

During the validation process, the old and 
new data stores can be run in parallel; new 
data is added or updated in both datastores 
simultaneously. Reports can be run against both 
systems and compared for accuracy. Running 
some queries across a large range of data will 
help to find differences that could be magnified 
across aggregated data.

SQL AND NOSQL DATABASE 
ADMINISTRATION

Performance Monitoring and Tuning
As development teams become smaller and 
more agile, they are also increasingly sensitive 
to database maintenance and administrative 
overhead. On application-focused teams, 
database experts are becoming less and less 
common. Traditional database administration 
and maintenance responsibilities are often 
rolled into ‘full-stack’ developer and DevOps 
positions. Operational overhead is often in direct 
competition with product development efforts. 
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For these reasons, the choice of a database 
must take into account the expertise of the 
organization and the need or desire to build up 
internal expertise around a given technology.

The ongoing maintenance of a database 
requires close monitoring and frequent 
performance tuning. As datasets grow and 
application traffic increases, administrators 
need to keep a close eye on disk space, CPU 
consumption, memory allocation, and index 
fragmentation. Performance adjustments are 
proprietary to each database and often require 
significant dedicated expertise.

A database administrator never wants to 
see database utilization spike over 100%. 
Therefore, administrators must provide a buffer 
against traffic spikes by ‘overprovisioning’ 
hardware. The degree to which hardware must 
be overprovisioned depends on the scaling 
characteristics of the database. In general, 
NoSQL databases have a flatter and more 
predictable performance curve. Therefore, 
NoSQL databases tend to require administrators 
to minimize overprovisioning without 
compromising safety.

Performance tuning can be used to minimize 
overprovisioning, but it can only go so far in 
preventing full utilization. When performance 
tuning hits a wall, the database must be scaled; 
the RDBMS administrator has two choices. First, 
the dataset can be ‘sharded,’ such that a subset 
of the data is stored on each node. Second, the 
administrator can add more powerful hardware, 
increasing the capacity of hardware by adding 
more powerful CPUs, more storage, and faster 
networking components. 

Often, teams do both, sharding and scaling, 
which adds both complexity and cost. The 
vertical scale adds significant cost at each step 
and eventually runs up against the physical 
limits of the network. 

NoSQL databases make it easier for 
administrators to monitor and manage database 
deployments. First, they tend to be capable of 
running at higher levels of utilization than most 
RDBMSs. Second, capacity can be increased 

by adding new nodes running on inexpensive 
commodity servers. But within the family of 
NoSQL databases, these two capabilities vary 
considerably. 

Some NoSQL databases also require expert 
administrators with detailed knowledge of 
proprietary tuning settings. Others adopt a 
more automated approach that minimizes 
tricky manual tuning parameters, enabling 
non-specialties to administer and operate the 
database.

Likewise, some NoSQL databases take a 
horizontal scale to an extreme, often requiring 
huge clusters to achieve the required 
performance targets and maintain SLAs. 
Sometimes these clusters run into the tens 
of thousands of nodes. While providing a 
frictionless path to scale, this approach also 
increases operational overhead. The ideal non-
relational database can efficiently use powerful 
modern hardware, while also enabling clusters 
to grow and shrink elastically with minimal 
administrator intervention. 

Backup and Recovery
In both RDBMS and NoSQL worlds, data 
can become corrupt due to hardware issues, 
software bugs, and user errors. The resilient 
architecture of NoSQL databases typically 
provides a buffer against data loss. Still, 
administrators need to be able to restore the 
data to a known ‘good state.’ A backup and 
recovery plan is essential, being built around 
two core targets: Recovery Point Objective 
(RPO) and Recovery Time Objective (RTO). 

• RPO is defined by the age of data in backup 
storage needed to resume normal operations 
after a failure. 

• RTO defines the time needed to restore the 
system to a normal state. 

A classic database restore plan might include 
a single daily backup along with differential 
backups every hour to support a one-hour RPO. 
For a large database, the recovery time for a 
full restore can take hours to days, and every 
backup takes additional storage space. 
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Node Repair and Replacement
Given the distributed nature of NoSQL clusters, 
nodes occasionally fall out-of-sync. To address 
this issue, NoSQL databases provide tools to 
bring out-of-sync nodes up-to-date using a 
repair procedure. Repairs populate the node to 
match the data on the other replicas. Sometimes 
a node can fall so far out-of-sync with the 
cluster that it needs to be replaced. As they are 
bootstrapped into the cluster, fresh nodes must 
stream a copy of the whole dataset; for large 
datasets, such a refresh can take an inordinate 
amount of time. NoSQL databases perform such 
operations using a variety of algorithms, some 
of which are more efficient than others. Thus, 
some NoSQL databases recover more quickly 
and predictably than others.

SCYLLA NOSQL: SCALE-UP OF 
RDBMS AND HIGH AVAILABILITY 
OF NON-RELATIONAL 
In this document, we have discussed a set of 
trade offs between SQL and NoSQL databases. 
If your use case requires ACID guarantees, 
then NoSQL might not be an option. But 

many modern, cloud-native applications are 
better suited to databases that support high 
availability and a developer-centric data 
model. The decision is based on business 
considerations: how important is each 
transaction? Where the aggregate scale and 
speed of all transactions outweighs the specific 
correctness of any single query, then NoSQL  
is the best fit. 

With this fundamental tradeoff in mind, one 
database, Scylla, has been designed from 
the ground-up to overcome one of the key 
limitations of the first generation of NoSQL 
databases. Using a unique, close-to-the-
hardware design, Scylla combines the scale 
up capabilities of traditional RDBMSs with the 
high availability and resilience of non-relational 
databases. The result is a database that 
extracts maximum performance from modern 
hardware to deliver predictable, low latency, 
while also minimizing operational overhead and 
significantly reducing TCO. 

Many IT organizations have followed the 
principles in this paper and have migrated 
successfully from RDBMS to the Scylla NoSQL 
database.

SQL NoSQL

Orientation Relational Generally non-relational

Schema Strict and rigid schema design and data 
normalization

Loose and more varied designs for 
unstructured and semi-structured data; 
data is generally denormalized

Language Structured Query Language (SQL) for 
defining, reading and manipulating data. 
Supports JOIN statements to relate data 
across tables.

There are different languages for querying, 
some quite similar to SQL, such as 
Cassandra Query Language (CQL) for 
wide column databases, or others radically 
different, such as using object-oriented 
JSON for document databases.

Scalability Vertically scalable. Loads on a single server 
can be increased with CPU, RAM or SSD.

Generally designed for horizontal 
scalability. Increased traffic can be handled 
by adding more servers in the database. 
This is useful for large and frequently 
changing datasets.

Structure Table-based, which is efficient for 
applications using multi-row transactions 
or systems that were built with a relational 
structure.

NoSQL database structure is variable, and 
can be based on documents, key-value 
pairs, graph structures or wide-column 
stores.
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Scylla is the real-time big data database. API-compatible 
with Apache Cassandra and Amazon DynamoDB, Scylla 
embraces a shared-nothing approach that increases 
throughput and storage capacity as much as 10X.  
Comcast, Discord, Disney+ Hotstar, Grab, Medium, 
Starbucks, Ola Cabs, Samsung, IBM, Investing.com and 
many more leading companies have adopted Scylla to 
realize order-of-magnitude performance improvements  
and reduce hardware costs. Scylla’s database is available  
as an open source project, an enterprise edition and a  
fully managed database as a service. ScyllaDB was  
founded by the team responsible for the KVM hypervisor.  
For more information: ScyllaDB.com


