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OVERVIEW
With data-intensive applications, scaling out the 
database is the norm. As a result, deployments 
are often awash in clusters of small nodes, 
which bring with them many hidden costs. For 
example, scaling out usually comes at the cost 
of resource efficiency, since it can lead to low 
resource utilization. So why is scaling out so 
common? Scale out deployment architectures 
are based on several assumptions that we’ll 
examine in this white paper. We’ll demonstrate 
that these assumptions prove unfounded for 
database infrastructure that is able to take 
advantage of the rich computing resources 
available on large nodes. In the process, we’ll 
show that ScyllaDB, the database for data-
intensive apps that require high performance 
and low latency, is uniquely positioned to 
leverage the multi-core architecture that 
modern cloud platforms offer, making it not 
only possible, but also preferable, to use smaller 
clusters of large nodes for data-intensive 
applications.

THE NEW AGE OF NOSQL  
AND COMMODITY HARDWARE
The NoSQL revolution in database management 
systems kicked off a decade ago. Since then, 
organizations of all sizes have benefitted from 
a key feature that the NoSQL architecture 
introduced: massive scale using relatively 
inexpensive commodity hardware. Thanks to 
this innovation, organizations have been able 
to deploy architectures that would have been 
prohibitively expensive and impossible to scale 
using traditional relational database systems. 

Across industries, the ability to align rapidly 
and efficiently scale applications for growing 
demand has proven to be a key competitive 
advantage. As a result, IT groups constantly 
strive to balance competing demands for higher 
performance and lower costs. Since NoSQL 
makes it easy to scale out and back in rapidly 
on cheaper hardware, it offers the best of both 
worlds: performance along with cost savings.

Over the same decade, ‘commodity hardware’ 
itself has undergone a transformation. However, 
most modern software doesn’t take advantage 
of modern computing resources. Most data-
intensive application frameworks that scale 
out, don’t scale up. They aren’t able to take 
advantage of the resources offered by large 
nodes, such as the added CPU, memory, and 
solid-state drives (SSDs), nor can they store 
large amounts of data on disk efficiently. 
Managed runtimes, like Java, are further 
constrained by heap size. Multi-threaded code, 
with its locking overhead and lack of attention 
for Non-Uniform Memory Architecture (NUMA), 
imposes a significant performance penalty 
against modern hardware architectures.

Software’s inability to keep up with hardware 
advancements has led to the widespread belief 
that running database infrastructure on many 
small nodes is the optimal architecture for 
scaling massive workloads. The alternative, 
using small clusters of large nodes, is often 
treated with skepticism. 

These assumptions are largely based on  
experience with NoSQL databases like Apache 
Cassandra. Cassandra’s architecture prevents it 
from efficiently exploiting modern computing 
resources—in particular, multi-core CPUs. Even 
as cloud platforms offer bigger and bigger 
machine instances, with massive amounts of 
memory, and ever denser storage options, 
Cassandra is constrained. It’s constrained 
by many factors, primarily its use of Java, 
but also its caching model and its lack of 
an asynchronous architecture. As a result, 
Cassandra is often deployed on clusters of small 
instances that run at low-levels of utilization. This 
low hardware utilization rate results in system 
sprawl, which equates to operational overhead, 
with a far larger footprint to keep managed and 
secure, all of which directly impacts staffing and 
infrastructure spend and ROI.

ScyllaDB set out to fix these deficiencies with its 
close-to-the-hardware database design. Written 
in C++ instead of Java, and optimized to make 
full utilization of the Linux operating systems 
found ubiquitously across modern cloud 
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environments, ScyllaDB implements a number 
of low-level architectural techniques, such 
as fully asynchronous shard-per-core. Those 
techniques, combined with a shared-nothing 
architecture, enable ScyllaDB to scale linearly 
with the available resources. This means that 
ScyllaDB can run massive workloads on smaller 
clusters of larger, denser nodes – an approach 
that vastly reduces all of the inputs to total cost 
of ownership (TCO).

A few common concerns are that large nodes 
won’t be fully utilized, that they have a hard 
time streaming data when scaling out and, 
finally, they might have a catastrophic effect 
on recovery times. ScyllaDB breaks these 
assumptions, resulting in improved TCO and 
reduced maintenance.

In light of these concerns, we ran real-world 
scenarios against ScyllaDB to demonstrate that 
the skepticism towards big nodes is misplaced. 
In fact, with ScyllaDB, big nodes are often best 
for data-intensive applications.

WHAT IS A LARGE NODE?
Before diving in, it’s important to understand 
what we mean by ‘node size’ in the context  

of today’s cloud hardware. Since Amazon EC2 
instances are regularly used to run database 
infrastructure, we will use their offerings for 
reference. The following graphic shows the 
Amazon EC2 I4i family, with increasingly large 
nodes, or ‘instances.’ As you can see, the 
number of virtual CPUs spans from 2 to 128.  
The amount of memory of those machines 
grows proportionally, reaching a terabyte with 
the i4i.32xlarge instance. Similarly, the amount 
of storage spans from almost half a terabyte to 
thirty terabytes.

On the surface, the small nodes look inexpensive,  
but prices are actually consistent across node  
sizes. No matter how you organize your 
resources—the number of cores, the amount of 
memory, and the number of disks —the price to 
use those resources in the cloud will be roughly 
the same. Other cloud providers, such as 
Microsoft Azure and Google Cloud, have similar 
pricing structures, and therefore a comparable 
cost benefit to running on bigger nodes.

ADVANTAGES OF LARGE NODES
Now that we’ve established resource price 
parity among node sizes, let’s examine some  
of the advantages that large nodes provide. 

I4i instance specs — Source: AWS

https://www.scylladb.com/product/technology/
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• Less Noisy Neighbors: On cloud platforms 
multi-tenancy is the norm. A cloud platform 
is, by definition, based on shared network 
bandwidth, I/O, memory, storage, and so 
on. As a result, a deployment of many small 
nodes is susceptible to the ‘noisy neighbor’ 
effect. This effect is experienced when one 
application or virtual machine consumes 
more than its fair share of available resources. 
As nodes increase in size, fewer and fewer 
resources are shared among tenants. In fact, 
beyond a certain size your applications are 
likely to be the only tenant on the physical 
machines on which your system is deployed. 
This isolates your system from potential 
degradation and outages. Large nodes shield 
your systems from noisy neighbors.

• Fewer Failures: Since large and small nodes 
fail at roughly the same rate, large nodes 
deliver a higher mean time between failures, 
or “MTBF” than small nodes. Failures in the 
data layer require operator intervention, and 
restoring a large node requires the same 
amount of human effort as a small one. In a 
cluster of a hundred nodes, you’ll likely see 
failures every day. As a result, big clusters of 
small nodes magnify administrative costs.

• Datacenter Density: Many organizations 
with on-premises datacenters are seeking 
to increase density by consolidating servers 
into fewer, larger boxes with more computing 

resources per server. Small clusters of 
large nodes help this process by efficiently 
consuming denser resources, in turn 
decreasing energy and operating costs. 

• Operational Simplicity: Big clusters of small 
instances demand more attention, and 
generate more alerts, than small clusters 
of large instances. All of those small nodes 
multiply the effort of real-time monitoring and 
periodic maintenance, such as rolling upgrades. 

In spite of these significant benefits, systems 
awash in a sea of small instances remain 
commonplace. In the following sections, we’ll 
run scenarios that investigate the assumptions 
that lead to the use of small nodes instead of 
big nodes, including performance, compaction, 
and streaming. We’ll demonstrate that those 
assumptions don’t always hold true when you 
crunch the numbers.

NODE SIZE AND PERFORMANCE 

A key consideration in environment sizing is 
the performance characteristics of the software 
stack. As we’ve pointed out, ScyllaDB linearly 
scales, enabling it to double performance as 
resources double. To prove this, we ran a few 
scenarios against ScyllaDB.

This scenario uses a single cluster of 3 machines 
from the I4i family. (Although we’re using only 
3 nodes here, out in the real-world ScyllaDB 
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runs in clusters of 100s of nodes, both big and 
small. In fact, one of our users runs a 1PB cluster 
with only 30 nodes). 3 nodes are configured as 
replicas (with a replication factor of 3). Using a 
single loader machine, the reference workload 
inserts 1,000,000,000 partitions to the cluster 
as quickly as possible. We double resources 
available to the database at each iteration. We 
also increase the number of loaders, doubling 
the number of partitions and the dataset at each 
step.

As you can see in the chart below, ingest time 
of 300GB with 4 virtual CPU clusters is roughly 
equal to 600GB using 8 virtual CPUs, 1.2TB with 
16 virtual CPUs, 2.4TB with 16 virtual CPUs and 
even when the total data size reached almost 
10TB, ingest time for the workload remained 
relatively constant. These tests show that 
ScyllaDB’s linear scale-up characteristics make 
it advantageous to scale up before scaling out, 
since you can achieve the same results on fewer 
machines.

NODE SIZE AND STREAMING

Some architects are concerned that putting 
more data on fewer nodes increases the risks 
associated with outages and data loss. You can 
think of this as the ‘Big Basket’ problem. It may 
seem intuitive that storing all of your data on a 
few large nodes makes them more vulnerable 

to outages, like putting all of your eggs in one 
basket. Current thinking in distributed systems 
tends to agree, arguing that amortizing failures 
over many tiny and ostensibly inexpensive 
instances is best. But this doesn’t necessarily 
hold true. ScyllaDB uses a number of innovative 
techniques to ensure availability while also 
accelerating recovery from failures, making  
big nodes both safer and more economical. 

Replacing a failed node requires the entire 
dataset to be replicated to the new node via 
streaming. On the surface, replacing a node by 
transferring 1TB seems preferable to transferring 
16TB. If larger nodes with more power and faster 
disks speed up compaction, can they also speed 
up replication? The most obvious potential 
bottleneck to streaming is network bandwidth. 

But the network isn’t the bottleneck for 
streaming. Even AWS’s I4i.4xlarge instances 
deliver network links up to 25 Gbps—enough 
bandwidth to transfer 5TB of data within thirty 
minutes. However, naively streaming data at 
full-speed may impact the customer-facing 
workload significantly elevating latencies. 

Streaming operations benefit from ScyllaDB’s 
autonomous and auto-tuning capabilities. 
ScyllaDB queues all requests in the database 
and then uses a scheduler to execute them in 
priority order. The schedulers use algorithms 
derived from control theory to determine the 
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optimal pace at which to run operations, based 
on available resources. 

These autonomous capabilities result in rapid 
replication with minimal impact on latency. 
Since this happens dynamically, added 
resources automatically factor into scheduling 
decisions. Nodes can be brought up in a cluster 
very quickly, further lowering the risk of running 
smaller clusters with large nodes.

To demonstrate this, we ran a streaming 
scenario against a ScyllaDB cluster. Using the 
same clusters as in the previous demonstration, 
we destroyed the node and rebuilt it from the 
other two nodes in the cluster. Based on these 
results, we can see that it takes about the same 
amount of time to rebuild a node from the other 
two, even for large datasets. It doesn’t matter 
if the dataset is 300GB or almost 10TB. Our 
experiment shows that the ScyllaDB database 
busts the myth that big nodes result in big 
problems when a node goes down.

Calculating the real cost of failures involves 
more factors than the time to replicate via 
streaming. If the software stack scales properly, 
as it does with ScyllaDB, the cost to restore a 
large node is the same as for a small one. Since 
the mean time between failures tends to remain 
constant regardless of node size, fewer nodes 
also means fewer failures, less complexity, and 
lower maintenance overhead.

Efficient streaming enables nodes to be rebuilt 
or scaled out with minimal impact. But a second 
problem, cold caches, can also impact restarts. 
What happens when a node is restarted, or a 
new node is added to the cluster during rolling 
upgrades or following hardware outages? 
The typical database simply routes requests 
randomly across replicas in the cluster. Nodes 
with cold caches cannot sustain the same 
throughput with the same latency.

ScyllaDB takes a different approach. Our 
heat-weighted load balancing technology, 
intelligently routes requests across the cluster 
to ensure that node restarts don’t impact 

throughput or latency. Heat-weighted load 
balancing implements an algorithm that 
optimizes the ratio between a node’s cache  
hit rate and the proportion of requests it 
receives. Over time, the node serving as request 
coordinator sends a smaller proportion of reads 
to the nodes that were up, while sending more 
reads to the restored node. The feature enables 
operators to restore or add nodes to clusters 
efficiently, since rebooting individual nodes no 
longer affects the cluster’s read latency.

NODE SIZE AND COMPACTION

Readers with real-world experience with 
Apache Cassandra might react to large nodes 
with a healthy dose of skepticism. In Apache 
Cassandra, a node with just 5TB can take a long 
time to compact. (Compaction is a background 
process similar to garbage collection in the Java 
programming language, except that it works 
with disk data, rather than objects in memory). 

Since compaction time increases along with the 
size of the dataset, it’s often cited as a reason 
to avoid big nodes for data infrastructure. If 
compactions happen too quickly, foreground 
workloads are destroyed because all of the CPU 
and disk resources are soaked up. If compaction 
is too slow, then reads suffer. A database like 
Cassandra requires operators to find the proper 
settings through trial and error, and once set, 
they are static. With those databases, resource 
consumption remains fixed regardless of shifting 
workloads.

As noted in the context of streaming, ScyllaDB 
takes a very different approach, providing 
autonomous operations and auto-tuning that 
give priority to foreground operations over 
background tasks like compaction —even as 
workloads fluctuate. The end result is rapid 
compaction with no measurable effect on end 
user queries.

To prove this point, we forced a major 
compaction on a node member of the same 
cluster as in the previous experiment.

https://www.scylladb.com/2017/09/21/scylla-heat-weighted-load-balancing/
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These results show the time it takes to run a 
major compaction over a growing dataset, 
and how it completes in a matter of minutes. 
This demonstrates that one of the primary 
arguments against using large nodes for 
data-intensive applications hinges on the false 
assumption that compaction of huge datasets 
must necessarily be slow. ScyllaDB’s linear scale-
up characteristics show that the opposite is true; 
compaction of large datasets can also benefit 
from the resources of large nodes.

THE DATABASE MAKES  
A DIFFERENCE
As our scenarios demonstrate, running on fewer 
nodes is inherently advantageous. The highly 
performant ScyllaDB database reduces the 

number of nodes required for data-intensive 
applications. Its scale-up capabilities enable 
organizations to further reduce node count 
by moving to larger machines. By increasing 
the size of nodes and reducing their number, 
IT organizations can recognize benefits at all 
levels, especially in total cost of ownership 
(TCO). Moving from a large cluster of small 
nodes to a small cluster of large nodes has a 
significant impact on TCO, while vastly reducing 
the mean-time between failures (MTBF) and 
administrative overhead.

The benefits of scaling up that we have 
demonstrated in this paper have been proven  
in the field. The diagram below illustrates 
the server costs and administration benefits 
experienced by a ScyllaDB customer. This 
customer migrated a Cassandra installation, 
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distributed across 120 i4i.2xlarge AWS instances 
with 8 virtual CPUs each, to ScyllaDB. Using 
the same node sizes, ScyllaDB achieved the 
customer’s performance targets with a much 
smaller cluster of only 12 nodes. The initial 
reduction in node sprawl produced a 10X 
reduction in server costs, from $721,123 to 
$72,112 annually. It also achieved a 10X reduction 
in administrative overhead, encompassing 
failures, upgrades, monitoring, etc.

Given ScyllaDB’s scale-up capabilities, the 
customer then moved to the larger nodes, the 
i4i.8xlarge instance with 32 virtual CPUs each. 
While the cost remained the same, those 3 
large nodes were capable of maintaining the 
customer’s SLAs. Scaling up resulted in reducing 
complexity (and administration, failures, etc.) 
by a factor of 40 compared with where the 
customer began (by moving from 120 nodes  
to 3).

As we’ve seen, there are many advantages to 
scaling up a distributed database environment 
before scaling out. If you’ve already scaled out, 
scaling up offers an escape from the costs and 
overhead of node sprawl. 

ScyllaDB gives users both the scale out benefits 
of NoSQL along with scale up characteristics 
that enable database consolidation and 
improved TCO. 

Ask yourself...

• Are you concerned your database isn’t 
efficiently utilizing all of its CPUs and disks?

• Are you investing too much time in managing 
excessively large clusters?

• Does your team have to replace dead nodes 
at odd hours on the weekends and holidays?

• Are you struggling to scale with your business 
as you grow 2X, 4X, 10X?

• Are you unable to meet service level 
agreements during failures and maintenance 
operations?

If the answer to even one of these questions is 
‘yes,” we’d suggest evaluating your distributed 
database options. Open source ScyllaDB is 
available for download from our website.  
Or start by running in minutes on ScyllaDB 
Cloud, our fully-managed database-as-a-service.

NEXT STEPS
Get started with ScyllaDB

Learn more at ScyllaDB University

Explore papers, videos, benchmarks & more

https://www.scylladb.com/
https://www.scylladb.com/product/scylla-cloud
https://www.scylladb.com/product/scylla-cloud
https://www.scylladb.com/download/
https://university.scylladb.com/
https://resources.scylladb.com/
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ABOUT SCYLLADB

ScyllaDB is the database for data-intensive apps that 
require high throughput and predictable low latency. It 
enables teams to harness the ever-increasing computing 
power of modern infrastructures – eliminating barriers to 
scale as data grows. Unlike any other database, ScyllaDB 
is built with deep architectural advancements that enable 
exceptional end-user experiences at radically lower costs. 
Over 400 game-changing companies like Disney+ Hotstar, 
Expedia, FireEye, Discord, Crypto.com, Zillow, Starbucks, 
Comcast, and Samsung use ScyllaDB for their toughest 
database challenges. ScyllaDB is available as free open 
source software, a fully-supported enterprise product,  
and a fully managed service on multiple cloud providers. 
For more information: ScyllaDB.com
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