
Why Scaling Up
Beats Scaling Out
for NoSQL

SCYLLADB WHITEPAPER

CONTENTS

OVERVIEW 3

THE NEW AGE OF NOSQL
AND COMMODITY HARDWARE 3

WHAT IS A LARGE NODE? 4

ADVANTAGES OF LARGE NODES 4

NODE SIZE AND PERFORMANCE 5

NODE SIZE AND STREAMING 6

NODE SIZE AND COMPACTION 7

THE DATABASE MAKES
A DIFFERENCE 8

NEXT STEPS 9

3

OVERVIEW
With data-intensive applications, scaling out the
database is the norm. As a result, deployments
are often awash in clusters of small nodes,
which bring with them many hidden costs. For
example, scaling out usually comes at the cost
of resource efficiency, since it can lead to low
resource utilization. So why is scaling out so
common? Scale out deployment architectures
are based on several assumptions that we’ll
examine in this white paper. We’ll demonstrate
that these assumptions prove unfounded for
database infrastructure that is able to take
advantage of the rich computing resources
available on large nodes. In the process, we’ll
show that ScyllaDB, the database for data-
intensive apps that require high performance
and low latency, is uniquely positioned to
leverage the multi-core architecture that
modern cloud platforms offer, making it not
only possible, but also preferable, to use smaller
clusters of large nodes for data-intensive
applications.

THE NEW AGE OF NOSQL
AND COMMODITY HARDWARE
The NoSQL revolution in database management
systems kicked off a decade ago. Since then,
organizations of all sizes have benefitted from
a key feature that the NoSQL architecture
introduced: massive scale using relatively
inexpensive commodity hardware. Thanks to
this innovation, organizations have been able
to deploy architectures that would have been
prohibitively expensive and impossible to scale
using traditional relational database systems.

Across industries, the ability to align rapidly
and efficiently scale applications for growing
demand has proven to be a key competitive
advantage. As a result, IT groups constantly
strive to balance competing demands for higher
performance and lower costs. Since NoSQL
makes it easy to scale out and back in rapidly
on cheaper hardware, it offers the best of both
worlds: performance along with cost savings.

Over the same decade, ‘commodity hardware’
itself has undergone a transformation. However,
most modern software doesn’t take advantage
of modern computing resources. Most data-
intensive application frameworks that scale
out, don’t scale up. They aren’t able to take
advantage of the resources offered by large
nodes, such as the added CPU, memory, and
solid-state drives (SSDs), nor can they store
large amounts of data on disk efficiently.
Managed runtimes, like Java, are further
constrained by heap size. Multi-threaded code,
with its locking overhead and lack of attention
for Non-Uniform Memory Architecture (NUMA),
imposes a significant performance penalty
against modern hardware architectures.

Software’s inability to keep up with hardware
advancements has led to the widespread belief
that running database infrastructure on many
small nodes is the optimal architecture for
scaling massive workloads. The alternative,
using small clusters of large nodes, is often
treated with skepticism.

These assumptions are largely based on
experience with NoSQL databases like Apache
Cassandra. Cassandra’s architecture prevents it
from efficiently exploiting modern computing
resources—in particular, multi-core CPUs. Even
as cloud platforms offer bigger and bigger
machine instances, with massive amounts of
memory, and ever denser storage options,
Cassandra is constrained. It’s constrained
by many factors, primarily its use of Java,
but also its caching model and its lack of
an asynchronous architecture. As a result,
Cassandra is often deployed on clusters of small
instances that run at low-levels of utilization. This
low hardware utilization rate results in system
sprawl, which equates to operational overhead,
with a far larger footprint to keep managed and
secure, all of which directly impacts staffing and
infrastructure spend and ROI.

ScyllaDB set out to fix these deficiencies with its
close-to-the-hardware database design. Written
in C++ instead of Java, and optimized to make
full utilization of the Linux operating systems
found ubiquitously across modern cloud

4

environments, ScyllaDB implements a number
of low-level architectural techniques, such
as fully asynchronous shard-per-core. Those
techniques, combined with a shared-nothing
architecture, enable ScyllaDB to scale linearly
with the available resources. This means that
ScyllaDB can run massive workloads on smaller
clusters of larger, denser nodes – an approach
that vastly reduces all of the inputs to total cost
of ownership (TCO).

A few common concerns are that large nodes
won’t be fully utilized, that they have a hard
time streaming data when scaling out and,
finally, they might have a catastrophic effect
on recovery times. ScyllaDB breaks these
assumptions, resulting in improved TCO and
reduced maintenance.

In light of these concerns, we ran real-world
scenarios against ScyllaDB to demonstrate that
the skepticism towards big nodes is misplaced.
In fact, with ScyllaDB, big nodes are often best
for data-intensive applications.

WHAT IS A LARGE NODE?
Before diving in, it’s important to understand
what we mean by ‘node size’ in the context

of today’s cloud hardware. Since Amazon EC2
instances are regularly used to run database
infrastructure, we will use their offerings for
reference. The following graphic shows the
Amazon EC2 I4i family, with increasingly large
nodes, or ‘instances.’ As you can see, the
number of virtual CPUs spans from 2 to 128.
The amount of memory of those machines
grows proportionally, reaching a terabyte with
the i4i.32xlarge instance. Similarly, the amount
of storage spans from almost half a terabyte to
thirty terabytes.

On the surface, the small nodes look inexpensive,
but prices are actually consistent across node
sizes. No matter how you organize your
resources—the number of cores, the amount of
memory, and the number of disks —the price to
use those resources in the cloud will be roughly
the same. Other cloud providers, such as
Microsoft Azure and Google Cloud, have similar
pricing structures, and therefore a comparable
cost benefit to running on bigger nodes.

ADVANTAGES OF LARGE NODES
Now that we’ve established resource price
parity among node sizes, let’s examine some
of the advantages that large nodes provide.

I4i instance specs — Source: AWS

https://www.scylladb.com/product/technology/

5

• Less Noisy Neighbors: On cloud platforms
multi-tenancy is the norm. A cloud platform
is, by definition, based on shared network
bandwidth, I/O, memory, storage, and so
on. As a result, a deployment of many small
nodes is susceptible to the ‘noisy neighbor’
effect. This effect is experienced when one
application or virtual machine consumes
more than its fair share of available resources.
As nodes increase in size, fewer and fewer
resources are shared among tenants. In fact,
beyond a certain size your applications are
likely to be the only tenant on the physical
machines on which your system is deployed.
This isolates your system from potential
degradation and outages. Large nodes shield
your systems from noisy neighbors.

• Fewer Failures: Since large and small nodes
fail at roughly the same rate, large nodes
deliver a higher mean time between failures,
or “MTBF” than small nodes. Failures in the
data layer require operator intervention, and
restoring a large node requires the same
amount of human effort as a small one. In a
cluster of a hundred nodes, you’ll likely see
failures every day. As a result, big clusters of
small nodes magnify administrative costs.

• Datacenter Density: Many organizations
with on-premises datacenters are seeking
to increase density by consolidating servers
into fewer, larger boxes with more computing

resources per server. Small clusters of
large nodes help this process by efficiently
consuming denser resources, in turn
decreasing energy and operating costs.

• Operational Simplicity: Big clusters of small
instances demand more attention, and
generate more alerts, than small clusters
of large instances. All of those small nodes
multiply the effort of real-time monitoring and
periodic maintenance, such as rolling upgrades.

In spite of these significant benefits, systems
awash in a sea of small instances remain
commonplace. In the following sections, we’ll
run scenarios that investigate the assumptions
that lead to the use of small nodes instead of
big nodes, including performance, compaction,
and streaming. We’ll demonstrate that those
assumptions don’t always hold true when you
crunch the numbers.

NODE SIZE AND PERFORMANCE

A key consideration in environment sizing is
the performance characteristics of the software
stack. As we’ve pointed out, ScyllaDB linearly
scales, enabling it to double performance as
resources double. To prove this, we ran a few
scenarios against ScyllaDB.

This scenario uses a single cluster of 3 machines
from the I4i family. (Although we’re using only
3 nodes here, out in the real-world ScyllaDB

0:40:00

6:00:00

Instance and dataset size

Ti
m

e
in

 h
ou

rs

4:00:00

2:00:00

0:00:00
xlarge

(1B partitions)
2xlarge

(2B partitions)
4xlarge

(4B partitions)
8xlarge

(8B partitions)
16xlarge

(16B partitions)
metal

(32B partitions)

2X 2X 2X 2X 2X

Ingestion time remains within bounds as the instance type and dataset size doubles

https://www.statista.com/statistics/430769/annual-failure-rates-of-servers

6

runs in clusters of 100s of nodes, both big and
small. In fact, one of our users runs a 1PB cluster
with only 30 nodes). 3 nodes are configured as
replicas (with a replication factor of 3). Using a
single loader machine, the reference workload
inserts 1,000,000,000 partitions to the cluster
as quickly as possible. We double resources
available to the database at each iteration. We
also increase the number of loaders, doubling
the number of partitions and the dataset at each
step.

As you can see in the chart below, ingest time
of 300GB with 4 virtual CPU clusters is roughly
equal to 600GB using 8 virtual CPUs, 1.2TB with
16 virtual CPUs, 2.4TB with 16 virtual CPUs and
even when the total data size reached almost
10TB, ingest time for the workload remained
relatively constant. These tests show that
ScyllaDB’s linear scale-up characteristics make
it advantageous to scale up before scaling out,
since you can achieve the same results on fewer
machines.

NODE SIZE AND STREAMING

Some architects are concerned that putting
more data on fewer nodes increases the risks
associated with outages and data loss. You can
think of this as the ‘Big Basket’ problem. It may
seem intuitive that storing all of your data on a
few large nodes makes them more vulnerable

to outages, like putting all of your eggs in one
basket. Current thinking in distributed systems
tends to agree, arguing that amortizing failures
over many tiny and ostensibly inexpensive
instances is best. But this doesn’t necessarily
hold true. ScyllaDB uses a number of innovative
techniques to ensure availability while also
accelerating recovery from failures, making
big nodes both safer and more economical.

Replacing a failed node requires the entire
dataset to be replicated to the new node via
streaming. On the surface, replacing a node by
transferring 1TB seems preferable to transferring
16TB. If larger nodes with more power and faster
disks speed up compaction, can they also speed
up replication? The most obvious potential
bottleneck to streaming is network bandwidth.

But the network isn’t the bottleneck for
streaming. Even AWS’s I4i.4xlarge instances
deliver network links up to 25 Gbps—enough
bandwidth to transfer 5TB of data within thirty
minutes. However, naively streaming data at
full-speed may impact the customer-facing
workload significantly elevating latencies.

Streaming operations benefit from ScyllaDB’s
autonomous and auto-tuning capabilities.
ScyllaDB queues all requests in the database
and then uses a scheduler to execute them in
priority order. The schedulers use algorithms
derived from control theory to determine the

Instance and dataset size

Ti
m

e
in

 h
ou

rs

0:30:00

0:40:00

0:20:00

0:10:00

0:00:00
xlarge

(1B partitions)
2xlarge

(2B partitions)
4xlarge

(4B partitions)
8xlarge

(8B partitions)
16xlarge

(16B partitions)
metal

(32B partitions)

The time to rebuild a ScyllaDB node remains relatively constant with larger data sets

7

optimal pace at which to run operations, based
on available resources.

These autonomous capabilities result in rapid
replication with minimal impact on latency.
Since this happens dynamically, added
resources automatically factor into scheduling
decisions. Nodes can be brought up in a cluster
very quickly, further lowering the risk of running
smaller clusters with large nodes.

To demonstrate this, we ran a streaming
scenario against a ScyllaDB cluster. Using the
same clusters as in the previous demonstration,
we destroyed the node and rebuilt it from the
other two nodes in the cluster. Based on these
results, we can see that it takes about the same
amount of time to rebuild a node from the other
two, even for large datasets. It doesn’t matter
if the dataset is 300GB or almost 10TB. Our
experiment shows that the ScyllaDB database
busts the myth that big nodes result in big
problems when a node goes down.

Calculating the real cost of failures involves
more factors than the time to replicate via
streaming. If the software stack scales properly,
as it does with ScyllaDB, the cost to restore a
large node is the same as for a small one. Since
the mean time between failures tends to remain
constant regardless of node size, fewer nodes
also means fewer failures, less complexity, and
lower maintenance overhead.

Efficient streaming enables nodes to be rebuilt
or scaled out with minimal impact. But a second
problem, cold caches, can also impact restarts.
What happens when a node is restarted, or a
new node is added to the cluster during rolling
upgrades or following hardware outages?
The typical database simply routes requests
randomly across replicas in the cluster. Nodes
with cold caches cannot sustain the same
throughput with the same latency.

ScyllaDB takes a different approach. Our
heat-weighted load balancing technology,
intelligently routes requests across the cluster
to ensure that node restarts don’t impact

throughput or latency. Heat-weighted load
balancing implements an algorithm that
optimizes the ratio between a node’s cache
hit rate and the proportion of requests it
receives. Over time, the node serving as request
coordinator sends a smaller proportion of reads
to the nodes that were up, while sending more
reads to the restored node. The feature enables
operators to restore or add nodes to clusters
efficiently, since rebooting individual nodes no
longer affects the cluster’s read latency.

NODE SIZE AND COMPACTION

Readers with real-world experience with
Apache Cassandra might react to large nodes
with a healthy dose of skepticism. In Apache
Cassandra, a node with just 5TB can take a long
time to compact. (Compaction is a background
process similar to garbage collection in the Java
programming language, except that it works
with disk data, rather than objects in memory).

Since compaction time increases along with the
size of the dataset, it’s often cited as a reason
to avoid big nodes for data infrastructure. If
compactions happen too quickly, foreground
workloads are destroyed because all of the CPU
and disk resources are soaked up. If compaction
is too slow, then reads suffer. A database like
Cassandra requires operators to find the proper
settings through trial and error, and once set,
they are static. With those databases, resource
consumption remains fixed regardless of shifting
workloads.

As noted in the context of streaming, ScyllaDB
takes a very different approach, providing
autonomous operations and auto-tuning that
give priority to foreground operations over
background tasks like compaction —even as
workloads fluctuate. The end result is rapid
compaction with no measurable effect on end
user queries.

To prove this point, we forced a major
compaction on a node member of the same
cluster as in the previous experiment.

https://www.scylladb.com/2017/09/21/scylla-heat-weighted-load-balancing/

8

These results show the time it takes to run a
major compaction over a growing dataset,
and how it completes in a matter of minutes.
This demonstrates that one of the primary
arguments against using large nodes for
data-intensive applications hinges on the false
assumption that compaction of huge datasets
must necessarily be slow. ScyllaDB’s linear scale-
up characteristics show that the opposite is true;
compaction of large datasets can also benefit
from the resources of large nodes.

THE DATABASE MAKES
A DIFFERENCE
As our scenarios demonstrate, running on fewer
nodes is inherently advantageous. The highly
performant ScyllaDB database reduces the

number of nodes required for data-intensive
applications. Its scale-up capabilities enable
organizations to further reduce node count
by moving to larger machines. By increasing
the size of nodes and reducing their number,
IT organizations can recognize benefits at all
levels, especially in total cost of ownership
(TCO). Moving from a large cluster of small
nodes to a small cluster of large nodes has a
significant impact on TCO, while vastly reducing
the mean-time between failures (MTBF) and
administrative overhead.

The benefits of scaling up that we have
demonstrated in this paper have been proven
in the field. The diagram below illustrates
the server costs and administration benefits
experienced by a ScyllaDB customer. This
customer migrated a Cassandra installation,

CASSANDRA
120 i4i.2xl

($721,123/year)

SCYLLADB
12 i4i.2xl

($72,112/year)

SCYLLADB
3 i4i.8xl

($72,112/year)

Additional
4x reduced

admin

10x cost
reduction

10x reduced
admin

Results: 5x TCO Reduction & MTBF Improved by 40x

ScyllaDB reduced server cost by 10X and improves MTBF by 40X (120 nodes to 3)

0:30:00

0:40:00

Ti
m

e
in

 h
ou

rs
0:20:00

0:10:00

0:00:00
xlarge

(1B partitions)
2xlarge

(2B partitions)
4xlarge

(4B partitions)
8xlarge

(8B partitions)
16xlarge

(16B partitions)
metal

(32B partitions)

Instance and dataset size

Compaction time in ScyllaDB under different dataset sizes

9

distributed across 120 i4i.2xlarge AWS instances
with 8 virtual CPUs each, to ScyllaDB. Using
the same node sizes, ScyllaDB achieved the
customer’s performance targets with a much
smaller cluster of only 12 nodes. The initial
reduction in node sprawl produced a 10X
reduction in server costs, from $721,123 to
$72,112 annually. It also achieved a 10X reduction
in administrative overhead, encompassing
failures, upgrades, monitoring, etc.

Given ScyllaDB’s scale-up capabilities, the
customer then moved to the larger nodes, the
i4i.8xlarge instance with 32 virtual CPUs each.
While the cost remained the same, those 3
large nodes were capable of maintaining the
customer’s SLAs. Scaling up resulted in reducing
complexity (and administration, failures, etc.)
by a factor of 40 compared with where the
customer began (by moving from 120 nodes
to 3).

As we’ve seen, there are many advantages to
scaling up a distributed database environment
before scaling out. If you’ve already scaled out,
scaling up offers an escape from the costs and
overhead of node sprawl.

ScyllaDB gives users both the scale out benefits
of NoSQL along with scale up characteristics
that enable database consolidation and
improved TCO.

Ask yourself...

• Are you concerned your database isn’t
efficiently utilizing all of its CPUs and disks?

• Are you investing too much time in managing
excessively large clusters?

• Does your team have to replace dead nodes
at odd hours on the weekends and holidays?

• Are you struggling to scale with your business
as you grow 2X, 4X, 10X?

• Are you unable to meet service level
agreements during failures and maintenance
operations?

If the answer to even one of these questions is
‘yes,” we’d suggest evaluating your distributed
database options. Open source ScyllaDB is
available for download from our website.
Or start by running in minutes on ScyllaDB
Cloud, our fully-managed database-as-a-service.

NEXT STEPS
Get started with ScyllaDB

Learn more at ScyllaDB University

Explore papers, videos, benchmarks & more

https://www.scylladb.com/
https://www.scylladb.com/product/scylla-cloud
https://www.scylladb.com/product/scylla-cloud
https://www.scylladb.com/download/
https://university.scylladb.com/
https://resources.scylladb.com/

Copyright © 2023 ScyllaDB Inc. All rights reserved. All trademarks or
registered trademarks used herein are property of their respective owners.

United States Headquarters
1309 S Mary Ave
Sunnyvale, CA 94087 U.S.A.
Email: info@scylladb.com

Israel Headquarters
11 Galgalei Haplada
Herzelia, Israel

SCYLLADB.COM

ABOUT SCYLLADB

ScyllaDB is the database for data-intensive apps that
require high throughput and predictable low latency. It
enables teams to harness the ever-increasing computing
power of modern infrastructures – eliminating barriers to
scale as data grows. Unlike any other database, ScyllaDB
is built with deep architectural advancements that enable
exceptional end-user experiences at radically lower costs.
Over 400 game-changing companies like Disney+ Hotstar,
Expedia, FireEye, Discord, Crypto.com, Zillow, Starbucks,
Comcast, and Samsung use ScyllaDB for their toughest
database challenges. ScyllaDB is available as free open
source software, a fully-supported enterprise product,
and a fully managed service on multiple cloud providers.
For more information: ScyllaDB.com

	Overview
	The New Age of NoSQL
and Commodity Hardware
	What is a Large Node?
	Advantages of Large Nodes
	Node Size and Performance
	Node Size and Streaming
	Node Size and Compaction

	The Database Makes
a Difference
	NEXT STEPS

