
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Anita Śledź
Student no. 406384

Kajetan Husiatyński
Student no. 406160

Jan Ciołek
Student no. 406120

Michał Sala
Student no. 406329

Scylla Rust Driver

Bachelor’s thesis
in COMPUTER SCIENCE

Supervisor:
Jacek Sroka PhD

Warsaw, June 2021

Abstract

The purpose of this thesis is to describe the creation of an open-source Scylla database
driver written in Rust. The driver was developed as a part of this thesis.

Scylla is a NoSQL database offering high performance and availability. It provides low
and consistent latency and throughput 10 times higher than the most popular alternative on
the market — Cassandra.

Scylla creators expressed the need for a functional driver implemented in and for Rust
language. Rust is a modern programming language often called the successor of C++. It
offers solutions to many issues regarding memory management and safety without impacting
performance.

The driver is officially supported by ScyllaDB and is the first such complete tool available
for developers that provides fully asynchronous API using Rust’s build-in async/await syntax.
It is fully compatible with Cassandra and supports Scylla-specific features.

Keywords

Rust, Scylla, driver, asynchronous, CQL, ScyllaDB, NoSQL

Thesis domain (Socrates-Erasmus subject area codes)

11.3 Informatics

Subject classification

Software
Software and its engineering
Software creation and management
Designing software
Software design engineering

Tytuł pracy w języku polskim

Sterownik do bazy danych Scylla w języku Rust

Contents

1. Introduction . 5
1.1. Motivation . 5
1.2. Scylla . 5
1.3. Rust . 6
1.4. Project’s main objectives . 6
1.5. Contents . 7

2. Requirements . 9

3. Development platform . 11
3.1. Rust as a language . 11

3.1.1. Tokio and asynchronous operation in Rust 11
3.2. Scylla Database . 11

3.2.1. Testing and Containerization . 12
3.2.2. Other compatible databases . 12

3.3. Driver . 12

4. Architecture . 13
4.1. Introduction . 13

4.1.1. Public interface components . 13
4.1.2. Internal components . 14

4.2. Prepared statement . 14
4.3. Batch statements . 14
4.4. Metrics . 14
4.5. Retry policy . 15
4.6. Load balancing . 15

4.6.1. Round robin load balancing policy . 15
4.6.2. Datacenter-aware round robin load balancing policy 16
4.6.3. Token-aware round robin load balancing policy 16
4.6.4. Token-aware datacenter-aware round robin load balancing policy . . . 16
4.6.5. Shard-aware load balancing . 16

4.7. Speculative execution . 17
4.7.1. Simple speculative execution policy . 17
4.7.2. Percentile speculative execution policy 17

4.8. Topology . 17
4.8.1. Handling topology changes . 17
4.8.2. Handling events pushed by server . 17

4.9. Value passing using rust type system . 17

3

4.10. CQL support . 18
4.11. Error handling . 19
4.12. Documentation . 19

5. Benchmarking . 21

6. Summary . 23

A. Team work organization . 25
A.1. Issues . 25
A.2. Pull Requests . 25
A.3. Reviews . 25
A.4. Open source . 25

B. Division of tasks . 27

C. Files attached to the thesis . 29
C.1. Testing . 29

4

Chapter 1

Introduction

1.1. Motivation

The purpose of this thesis is to describe the creation of an open-source Scylla database driver
written in Rust. The driver was developed as part of this thesis during the Team programming
project course at the University of Warsaw as a Bachelor Thesis in Computer Science.

The team that worked on the project consisted of four people: Jan Ciołek, Kajetan Hu-
siatyński, Michał Sala and Anita Śledź, under the supervision of Jacek Sroka PhD.

The project was commissioned by the ScyllaDB company. The project was looked after
by two ScyllaDB employees — Piotr Sarna and Piotr Dulikowski, who were a part of a team
responsible for creating the initial version of the driver. The driver started its life during a
hackathon at ScyllaDB, but it was lacking most needed functionality. Our team was tasked
with adding all of the expected features.

The development of the project took place during the academic year of 2020/2021, and
has been divided into three main phases:

1. requirements specification,

2. development and implementation of a project and its documentation,

3. publishing and testing.

The main goal of the project was to create a fully functional Rust driver. The driver
that was developed is optimized for Scylla database, using Scylla’s specific shard-per-core
architecture.

The first release of the driver took place on the 7th of April 2021.

1.2. Scylla

Scylla Database is one of many products created and offered by the authority contractor
ScyllaDB company.

Scylla is a NoSQL database, which was released in September 2015. NoSQL databases
are characterized by different data model than relational databases [13]. The modeling differs
between NoSQL databases, for example, they can use a wide column model, key-value model
or document model. The differences in modeling structures are a result of optimizing the
response time and availability of such database. The data model of Scylla is a wide column
model. It uses structures from relational database, but the data stored and their names

5

can be different from row to row. It is often interpreted as two-dimensional key-value store.
Scylla is a distributed database, which means that the data stored in it can be stored across
different locations, called data centers with multiple nodes. Singular information is being
stored in many nodes, to prevent data loss. All of this offers high performance, scalability
and functionality.

It operates using CQL protocol, which makes it compatible with the most popular alter-
native on the market — Cassandra [3]. There are some things that distinguish Scylla from
Cassandra.

Scylla’s language of choice is C++, unlike Cassandra, which is implemented in Java. As
a result of the C++ specific implementation decisions, Scylla offers up to 10 times higher
throughput.

Scylla is also characterized by its sharding feature. It divides the data between CPU cores,
which allows for minimized synchronization and improves performance. The driver makes full
use of this feature. Requests are sent directly to specific CPU cores to achieve the best speed
possible.

More information about the Scylla Database can be found in here: [16, 11, 13, 5, 7, 9, 8,
12].

More about the Cassandra can be found in here: [3].
More about comparison of those two databases can be found in here: [4, 10].

1.3. Rust

Rust is a programming language of increasing popularity. For 5 years it has been gaining
recognition among programmers thanks to its innovative approach to memory control. It
ensures full security of memory management and thus the inability to trigger "undefined
behavior". As a result, it is often referred to as the C++ successor. It has very similar ca-
pabilities and provides solutions to corresponding problems with comparable execution times
and no issues with memory.

1.4. Project’s main objectives

Driver is a full-feature library for the Rust language which allows communication with CQL-
based NoSQL databases.

For asynchronous operations the driver used the Tokio framework. It is a popular and
async library in the Rust ecosystem. Use of Tokio library for asynchronous actions is offering
more than any other alternative library that exists in Rust — it provides non-blocking com-
ponents, such as tool to work with asynchronous tasks, timeouts, sleeps, channels, and many
many more. More information about it can be found in chapter 3.

In addition to being compatible with the Scylla database, the driver is compatible with
all NoSQL databases using the CQL protocol. However, it is optimized for the specifics of
Scylla, i.e., the driver can work in shard aware mode. Shard-per-core architecture is a feature
that distinguishes Scylla among other databases. Also, each node in Scylla cluster operates
peer-to-peer, without primary/replica model.

Apart from the features described in the Requirements chapter, there are several bench-
marks created. The benchmarks compare the driver’s speed with other Rust drivers, and also
Scylla drivers in other programming languages.

The first release of the driver took place on the 7th of April 2021. The publication can be
found on crates.io, Rust community’s package registry. It is now officially available for Rust

6

https://crates.io/crates/scylla

projects.

1.5. Contents

The rest of the thesis is organized as follows:

• Chapter 2: describes the specifications of the project agreed upon with the client.

• Chapter 3: contains a description of Rust as a language, including Tokio, the asyn-
chronous Rust platform. It also describes the Scylla database, and the role of container-
ization in the testing process.

• Chapter 4: describes the technical specification of the driver.

• Chapter 5: contains the documentation and description of the benchmarking process
and its results.

• Chapter 6: summarizes the work on the driver, describes the publication process and
potential future development directions.

There are also 3 appendixes in the thesis:

• Appendix A describes the team work organization and division of tasks.

• Appendix B describes the task division among the teammates.

• Appendix C contains description of files attached to the thesis.

7

Chapter 2

Requirements

At the beginning of the project, the team had a series of meetings with Scylla representatives.
An agreement was reached with the client regarding the features that needed to be imple-

mented in order to provide a functional driver. The list is presented below:

1. Driver-side metrics — implementation of multiple metrics, for example number of queries
performed by the driver, number of errors and latency,

2. Handling topology changes inside the database and presenting them to the user,

3. Custom error types,

4. Performance benchmarks,

5. Configurable load balancing algorithms — making driver more efficient by changing the
request distribution algorithms,

6. Configurable retry policies of queries,

7. Support of Transport Layer Security Protocol (TLS),

8. Query builders — support for each of the four types of Scylla queries,

9. Support CQL batch statements,

10. Support CQL Authentication,

11. CQL Tracing — query trace recording,

12. Handling events pushed by the server,

13. Speculative execution,

14. Correctness and integration tests,

15. Documentation of benchmark,

16. Publication on crates.io.

At the end of the project, all of these features have been implemented and the driver has
been published to crates.io, which is the official Rust package repository.

Implementation details on each feature can be found in the chapter 4.

9

Chapter 3

Development platform

3.1. Rust as a language

Rust is a programming language that is quickly gathering interest among programmers.
The first stable release was published in 2015, and since then the popularity has skyrock-

eted. In the years 2016-2020, the Stack Overflow community declared Rust the "Most Loved"
programming language [15].

What distinguishes Rust, is that it does not permit any null pointers, dangling pointers
or data races.

Other prominent features of Rust include: memory safety, no garbage collector, speed of
execution.

3.1.1. Tokio and asynchronous operation in Rust

Rust has async/await keywords built in, but the standard library does not support asyn-
chronous input-output operations. The solution to this problem was using one of the commu-
nity crates. The library, which adds the missing features is Tokio[17]. It provides asynchronous
sockets, files, and channels along with a runtime. This library was used in the project to sup-
port any asynchronous operations.

3.2. Scylla Database

Scylla was created as an attempt to create a wide-column modeled NoSQL database, like
Cassandra. To achieve full compatibility with other databases, it uses the popular CQL
binary protocol to communicate with clients [1, 14]. CQL binary protocol is a protocol firstly
introduced in Cassandra database. This made it possible to create a single driver which can
now be used for both Cassandra and Scylla.

Scylla has a few features not present in Cassandra, that required explicit support from the
driver. The most important one being "shard-per-core" implementation. This implementation
means, that on each node data is divided between CPU cores. Each core controls some part of
the data so that no data is shared between threads. This allows for reduced synchronization
thus improves performance. When sending a query, a Scylla-optimized driver has to ensure,
that it is sending the data via connection to the proper CPU core.

11

3.2.1. Testing and Containerization

To ensure the best quality various testing methods were employed. The most important one
was the Continuous Integration. Before each change could be accepted, a suite of automated
tests was performed.

The tests consist of:

• Unit tests — Each important module has a test suite, that could be ran using standard
rust tooling.

• Integration tests — There are multiple tests that connected to the database and per-
formed various queries. This provides end to end testing of all functionalities and ensures
compatibility with Scylla and Cassandra.

• Format check — All code is checked for compliance with formatting style guidelines
using rustfmt tool.

• Automated code suggestions — cargo clippy is used, which is a tool providing suggestions
ranging from common mistakes to code improvements.

If a proposed change failed any of tests above it would not be merged.
Some additional manual tests were created which could not be included in the CI. They

covered various scenarios in which nodes were added, removed or even crashed. To make the
setup of various scenarios as easy as possible each manual test is containerized using Docker
containers.

Scylla and Cassandra provide docker images which allows to easily set up a local database
instance.

3.2.2. Other compatible databases

The driver is fully compatible with Cassandra and Scylla

3.3. Driver

The driver is a standard Rust library, alternatively called: crate, that can be easily added to
new Rust projects.

For asynchronous operations the driver used the Tokio framework, which is one of the
most popular async libraries in the Rust ecosystem.

The driver is a library written fully in Rust. This means that there cannot be any invalid
memory accesses or data races between threads. However other errors such as deadlocks are
still possible, the compiler is not able to detect them. Alas this also means that in some
situations performance had to be sacrificed to achieve safety, but benchmarks results are still
great.

The only part of the driver that is not Rust dependent is the C++ openssl dependency
used for TLS connections. The user does not have to depend on it as long as TLS connection
is not necessary. Pure Rust implementation of TLS is on the way, but it is not ready to be
used in the driver yet.

The driver was published on the official Rust package repository — crates.io.

12

crates.io

Chapter 4

Architecture

4.1. Introduction

In the driver there are two key sections. The public interface available to the user and the
internal architecture.

4.1.1. Public interface components

• Session — coordination of all requests and connections,

• SessionBuilder — creation of new Session instances,

• Query — creation and configuration of simple queries,

• PreparedStatement — representation of prepared query, which has far better perfor-
mance than Query,

• BatchStatement — a batch of queries that can be executed at once,

• QueryBuilder — utility allowing simple creation of Query,

• Metrics — representation of metrics collected by Session,

• RetryPolicy — customizable strategy used to retry failed queries,

• LoadBalancingPolicy — configuration of distributing load equally between database
nodes and sending queries to the nodes containing queried data,

• SpeculativeExecutionPolicy — customizable strategy used to decide whether the
driver should try to do a new query that could finish faster than the one sent previously,

• RowIterator— iterator which allows for seamless access to rows acquired from multiple
paged queries.

Query, PreparedStatement and BatchStatement can be passed to Session object
to trigger execution. RetryPolicy, LoadBalancingPolicy and SpeculativeExecution-
Policy are passed to SessionBuilder during session creation process.

13

4.1.2. Internal components

• Cluster — database nodes and topology changes connection management,

• Connection — handling of request serialization and deserialization,

• ConnectionKeeper — detection of connection failure and reconnection,

• TopologyReader — fetches latest information about active nodes in the cluster.

All of these components work on different asynchronous fibers and communicate using message
channels.

4.2. Prepared statement

A statement can be prepared to improve query performance. During preparation the database
parses the query and prepares it for quick execution. Then when the driver decides to ex-
ecute the query the database is ready and the query can be performed with a much better
performance.

Preparing also has influence on load balancing. Prepared statements contain additional
information, which allows to route queries so that the query is always sent to a node containing
desired data.

4.3. Batch statements

A batch statement allows to execute multiple statements as an atomic operation. A single
batch statement consists of multiple Query or PreparedStatement. All statements in-
cluded in a batch must either an INSERT, UPDATE or DELETE. Statements that return
rows are not allowed.

4.4. Metrics

Every Session keeps track of the number of performed and failed queries and their latency,
and presents them to the user with the use of a Metrics object.

Queries are split into two categories — those that return an iterator and those that do
not. This division was motivated by the fact that performing a paged query spawns a task
that can send more than one request to the database resulting in multiple latency entries and
increasing of the performed queries counter.

Before executing each query the driver increments the appropriate counter and saves the
timestamp at the begging of the request. After receiving the response driver logs the latency
of a query by measuring the elapsed time and pushes it into the latency histogram. If the
driver detects an error it also increases the error counter.

The user can access metrics with Session’s getter method get_metrics(). The metrics
provide a getter for every counter and methods that return average latency or histogram’s
percentile.

A use case is presented in scylla-rust-driver/examples/basic.rs file.

14

https://github.com/scylladb/scylla-rust-driver/blob/main/examples/basic.rs

4.5. Retry policy

When a query fails the driver has to decide whether to retry it. To make the decision it needs
to know some information about the query and the reason for its failure.

The most important information about the query is whether it is idempotent. When a
query is idempotent it can be executed any number of times and the result will be the same.
This could be for example a select. On the other hand when a query is not idempotent
executing it more than once would lead to an invalid state. For example adding one to
an element in a table gives different results when done multiple times. If the query is not
idempotent the driver will only retry it in a few cases — one of them is when the node is still
starting and it is known for sure that the query was not executed and it can be retried on
another node.

Once it is known that a query can be retried the driver has to look at the reason of the
failure. If the queried node is simply overloaded it is probably a good idea to query another
node. If the query failed because there was a syntax error the driver should just give up and
report the error to the user.

Retry policies are fully configurable, if someone needs some custom behaviour they can
implement their own.

4.6. Load balancing

A Scylla cluster usually consists of multiple nodes. Each node is responsible for storing
different parts of data. If a driver wants to minimize the latency between sending request and
receiving a response, it has to choose the best node to contact for a given query — the one
that stores all the needed data.

The process of choosing which nodes to contact is called load balancing. Before sending
each request, the driver creates a load balancing plan, which is a list of nodes to contact. The
plan is created by a load balancing policy, a configurable component of Session.

When a query is executed, the connection to a node from a load balancing plan is picked
and a request is send via it. In case of a request failure, such as a timeout, the next node
from load balancing plan can be contacted, depending on the decision of the retry policy.

Load balancing policies supported by the driver:

• Round robin load balancing policy,

• Datacenter-aware round robin load balancing policy,

• Token-aware round robin load balancing policy,

• Token-aware datacenter-aware round robin load balancing policy.

4.6.1. Round robin load balancing policy

The simplest policy. It distributes requests equally between known cluster nodes in a round-
robin fashion. Each plan produced by this policy is a list of all nodes cyclically shifted by
some factor α. α is changed after each plan calculation.

This policy does not take into account the distribution of data on nodes. Using it as the
main policy may negatively affect performance.

15

4.6.2. Datacenter-aware round robin load balancing policy

This policy is parameterized using a datacenter name. It allows the driver to prioritize nodes
in the closest datacenter.

Each plan produced by this policy is a concatenation of two lists:

• The first list is a list of nodes from a chosen datacenter cyclically shifted as in the round
robin policy.

• The second list is a list of nodes from all other datacenters cyclically shifted as in the
round robin policy.

This policy does not take into account the distribution of data on nodes. Using it as the
main policy may negatively affect performance.

4.6.3. Token-aware round robin load balancing policy

Each node in a Scylla/Cassandra cluster is storing data, that can be identified using a set of
tokens. A token is a 64-bit signed integer. One of important driver features, is the ability
to calculate a token for a given PreparedStatement. This allows for load balancing opti-
mization by producing plans which contain only such nodes, that the data stored on them is
associated with a PreparedStatement’s token.

This policy takes advantage of the optimization mentioned above. Plan construction works
in two phases:

• In the first phase, the policy gathers nodes that store data associated with a load
balanced query’s token. If no token is provided, the policy falls back to a set of all
nodes.

• In the second phase, the policy passes a list created in the first step to the round robin
load balancing policy, and outputs the processed result.

This policy takes the distribution of data on nodes into account. Using it as the main
policy affects performance positively.

4.6.4. Token-aware datacenter-aware round robin load balancing policy

This policy behaves the same as the previous one (Token-aware round robin), with the ex-
ception of using a datacenter-aware round robin load balancing policy in the second phase of
building the load balancing plan.

4.6.5. Shard-aware load balancing

Scylla has one key optimization that differentiates it from Cassandra — sharding. A single
database node is additionally divided into shards. Each shard keeps a separate part of the
data. Usually there is one shard per CPU core. When making a request the driver can
calculate which shard keeps the data that is needed and send the request exactly to this shard.
This allows to minimize synchronization between CPU cores which improves performance.

Shard-aware load balancing is automatically enabled once the driver detects that a node
is divided into shards.

16

4.7. Speculative execution

Speculative execution is an optimization technique which allows to reduce query latency in
high load scenarios. If a query takes too long to finish, speculative execution policy can decide
to start another query in parallel. There is a chance that this second query will finish before
the first one.

4.7.1. Simple speculative execution policy

In this execution policy the driver waits for a set amount of time before performing the next
request in parallel. If this new query also takes too long to finish the driver starts the next
one. This repeats at most a specified number of times.

4.7.2. Percentile speculative execution policy

This execution policy is similar to the simple speculative execution policy, but the amount
of time to wait before starting speculative queries is set to nth percentile of query latencies.
The nth percentile of query latencies is taken from Session’s Metrics.

4.8. Topology

Driver maintains information about the topology of its cluster — which nodes are alive, which
are down, what data centers are there, etc.

On startup the driver is given addresses of a few nodes from the cluster. It connects to
them and downloads information about all other existing nodes. Even if one or two nodes are
dead it connects to other alive ones and still works without any issues.

Topology information is fetched using a single control connection to one of the active nodes
in the cluster.

4.8.1. Handling topology changes

The topology can change at any moment. New nodes can be added to the cluster, some nodes
might be removed or just crash. The driver handles these changes gracefully. It queries the
latest topology on regular intervals and listens for any topology change events.

4.8.2. Handling events pushed by server

Driver can subscribe to cluster events, in order to quickly react to certain situations. For
example, when a node in Scylla/Cassandra cluster becomes unreachable, an event carrying
information about it can be sent to a driver. The driver uses this information to mark nodes
as down/up or to trigger topology refresh earlier than planned. As a result it avoids routing
queries to removed nodes.

4.9. Value passing using rust type system

Passing values in queries is made in a clean and easy to use way. When executing a query all
bound values are given as a tuple of Rust objects. This means that the user can use normal
Rust types such as i64 and pass them straight to a query without any difficulties.

17

4.10. CQL support

CQL is used both in Scylla and Cassandra. This language has specified binary protocol, called
CQL Binary Protocol. Scylla and Cassandra both use CQL Binary Protocol v4. Documenta-
tion can be found here: https://github.com/apache/cassandra/blob/trunk/doc/native_
protocol_v4.spec.

Model offered by Cassandra Query Language is similar to the one offered by SQL. The
data is stored in tables with rows and columns. CQL offers many types, including custom
types and collection types.

Putting focus on implementing all CQL Binary Protocol features allowed the users to
access full functionality of the database via the driver.

CQL types Scylla and CQL support integer representation of different sizes. Different
precisions have different names, for example a 64 bits integer is represented as "bigint" and
16 bits integer is "smallint". Implementation of parsing and representation of these integers
as Rust data types was introduced as follows:

CQL datatype Rust datatype
int i32

bigint i64
smallint i16
tinyint i8

CQL supports also representation of real numbers, represented by two different data types:
float and double. The two types differ in precision and hence the size of the variable. Parsing
and representing these two types in Rust has been implemented as follows:

CQL datatype Rust datatype
float f32
double f64

Other types that were introduced were boolean and universally unique identifier (uuid),
with 128 bit label:

CQL datatype Rust datatype
uuid Uuid

boolean bool

Next types implemented were varint, counter and decimal. Varint and decimal represent
numbers bigger than regular integers covered in regular integer types, so they are represented
by matching Rust types:

CQL datatype Rust datatype
counter Counter
varint BigInt
decimal BigDecimal

Time related CQL data types were implemented using the chrono crate, to make the
experience more user-friendly:

CQL datatype Rust datatype
date NaiveDate

duration Duration

18

https://github.com/apache/cassandra/blob/trunk/doc/native_protocol_v4.spec
https://github.com/apache/cassandra/blob/trunk/doc/native_protocol_v4.spec

CQL Collections Support for the CQL collection types Map, Set, Tuple and List has also
been implemented. Collections parsing and representation was implemented with Rust types
with the driver’s type CQLValue:

CQL datatype Rust datatype
List Vec<CQLValue>
Map Vec<(CQLValue, CQLValue)>
Set Vec<CQLValue>

Tuple Vec<CQLValue>

CQL Authentication CQL Authentication mechanism was added, making it available for
the user in SessionBuilder. User can define username and password that they want to create
connection with.

Authenticators are the database options by which user can authenticate their connection.
The driver supports the following CQL Authenticators:

• AllowAllAuthenticator,

• CassandraAllowAllAuthenticator,

• CassandraPasswordAuthenticator,

• PasswordAuthenticator.

4.11. Error handling

Explicit error handling is an integral part of Rust. Each function that might fail returns a
result that has to be explicitly checked for failure. In case of failure the user can access an
enum type which covers all possible error causes.

4.12. Documentation

The driver is well documented including:

• Code comments,

• API documentation [2],

• A tutorial book [6].

Since the driver is an open source project, each line of code needed to be clean and under-
standable for the reader. Thanks to thorough review done by team members and ScyllaDB
developers, any part that could be incomprehensible is commented.

API documentation is a part of project’s documentation. It contains the description of
driver’s application programming interface.

A tutorial book has been created. The style the book has been kept in similar to Rust
tutorial book, to make it easier to start up with a clean project for new Rust users. It contains
examples of real code and precise description of each feature.

19

Chapter 5

Benchmarking

Benchmarks were ran to find out how good the performance of various drivers is. The results
were excellent. Rust driver is faster than any other driver available.

Here are the results of a benchmark, where the driver had to perform 10,000,000 inserts
mixed with 10,000,000 selects, while doing at most the given number of concurrent requests
at once:

• scylla-rust-driver — This driver.

• cpp — official Scylla C++ driver. Sadly at the moment multithreaded functionality is
buggy, so it operates on a single thread.

21

• cpp-multi — DataStax C++ Cassandra driver. Optimized for Cassandra, but can also
be used with Scylla. Uses all available CPUs.

• cassandra-cpp — Rust bindings to the DataStax C++ Cassandra driver mentioned
above.

• gocql — Driver implemented in Go.

• cdrs-tokio— The only other asynchronous driver written in Rust. Currently it is much
slower and lacks some features.

There are still some optimizations that could be done in this driver. With future devel-
opment, better results can be achieved. All benchmarks are publicly available on a Github
repository: https://github.com/cvybhu/rust-driver-benchmarks. Each benchmark is in
a dedicated docker container, which allows to easily reproduce them.

22

https://github.com/cvybhu/rust-driver-benchmarks

Chapter 6

Summary

As part of this thesis, a driver for the Scylla database in the Rust language was created. The
driver was fully implemented during the project and published as a public library, available
to all developers of the Rust language. Each requirement from the requirements chapter has
been implemented. The team was supported by ScyllaDB developers in order to come up with
the adequate solution to any encountered issues. Finally, contracting authority was thrilled
with the result.

The driver has been published on crates.io — the Rust package repository. Multiple users
are already using this crate and have come to the team with questions and features requests.

Future plans for the driver include:

• Better support for lightweight transactions (LWT),

• Possibly replacing C++ driver with bindings to this driver,

• More integration tests to test for all possible scenarios.

23

https://crates.io/crates/scylla

Appendix A

Team work organization

During development Github was used along with its rich set of features. The code was hosted
on a public git repository, which can be found here: https://github.com/scylladb/scylla-rust-
driver.

A.1. Issues

The tasks were managed using Github issues. For each task there was an issue with a com-
prehensive description of the problem.

This made work organization efficient and effortless.
Additionally everyone can create an issue. This makes Github issues feature also serve as

a bug tracker. There were multiple users who created new issues ranging from bug reports to
feature requests.

A.2. Pull Requests

All proposed changes were created as Github pull requests by contributors. Every pull request
contains description of the changes. Before accepting a pull request it had to be rigorously
reviewed by Scylla developers.

A.3. Reviews

Github pull requests have great review capabilities. Everyone can create a review where they
can leave comments about each line. This makes discussion about specific changes much more
organized. Each comment starts its own thread where only this change is discussed.

A pull request can only be merged once all reviewers approve of the changes.

A.4. Open source

The driver is a public open-source repository, which means that anyone can create new issues,
pull requests or review code. This allowed to build a community around the driver. During
development the team was eager to help people from outside to implement small features that
they were missing. Features described in this thesis were implemented only by the thesis’
authors.

25

https://github.com/scylladb/scylla-rust-driver
https://github.com/scylladb/scylla-rust-driver

Appendix B

Division of tasks

Individual tasks have been done by separate team members or in smaller groups.

• Jan Ciołek:

– Basic CQL types receiving and sending,

– User defined types,

– Reconnecting to the cluster,

– USE KEYSPACE statement,

– Retry policy,

– Query tracing,

– Documentation,

– Benchmarks — Rust, C++, cassandra-cpp, cdrs-tokio.

• Kajetan Husiatyński:

– Driver-side metrics,

– CQL types support — collection types,

– TLS support,

– Schema agreement,

– CI improvements,

– Benchmarks — resolving datarace issues.

• Michał Sala:

– Load balancing,

– Receiving and reacting to events pushed by server,

– Integration with logging library,

– Replica sets calculation for token-aware load balancing,

– Expose a type that represents unset value,

– Batch statement support,

– Speculative execution support,

– Benchmarks — gocql.

27

• Anita Śledź:

– Error reformatting,

– CQL types support:

∗ numeric types,
∗ data and time types,
∗ collection types,
∗ other types,

– CQL authentication support for:

∗ Scylla,
∗ Cassandra,

– Schema change event handling.

28

Appendix C

Files attached to the thesis

Files attached to the thesis are clones of repositories the team worked on. Each repository
contains README.md file with thorough instructions of how to build project or example.

• scylla-rust-driver directory — official repository clone from Scylla Github account for
the driver, containing source code, examples, tests. The repository can be found online
here.

• rust-driver-tests directory — repository clone with manual tests.

• rust-driver-benchmark directory — repository clone with benchmark source code,

• documentation directory — directory containing Documentation Book pdf named book.pdf,

• thesis directory — directory with source code for this thesis, written in Latex,

• Scylla_Rust_Driver_Thesis.pdf — thesis (this file).

C.1. Testing

The driver was thoroughly tested including unit tests and integration tests covering various
scenarios.

Separately, the manual tests were developed and they covered scenarios:

• Various node events tests,

• Schema change test,

• Data Center Aware Network Test.

In order to test those scenarios, each test has a destined docker container. An instruction
on how to run each test is attached.

29

https://github.com/scylladb

Bibliography

[1] Cassandra Query Language. url: https://cassandra.apache.org/doc/latest/cql/
index.html.

[2] Documentation. url: https://docs.rs/scylla/0.1.0/scylla/.

[3] Avinash Lakshman and Prashant Malik. “Cassandra: A Decentralized Structured Stor-
age System”. In: SIGOPS Oper. Syst. Rev. 44.2 (Apr. 2010), pp. 35–40. issn: 0163-5980.
doi: 10.1145/1773912.1773922. url: https://doi.org/10.1145/1773912.1773922.

[4] Ashraf Mahgoub et al. “Suitability of NoSQL systems — Cassandra and ScyllaDB— For
IoT workloads”. In: 2017 9th International Conference on Communication Systems and
Networks (COMSNETS). 2017, pp. 476–479. doi: 10.1109/COMSNETS.2017.7945437.

[5] Scaling Up versus Scaling Out: Mythbusting Database Deployment Options for Big Data.
url: https : / / go . scylladb . com / whitepaper - scaling - up - vs - scaling - out -
offer.html.

[6] Scylla Rust Driver Documentation Book. url: https://cvybhu.github.io/scyllabook/
index.html.

[7] ScyllaDB. 6 Reasons to Switch from DataStax to Scylla. url: https://go.scylladb.
com/switch-reasons-datastax-scylla-offer.html.

[8] ScyllaDB. Building the Real-Time Big Data Database: Seven Design Principles be-
hind Scylla. url: https://go.scylladb.com/real- time- big- data- database-
principles-offer.html.

[9] ScyllaDB. Maximizing Scylla Performance: A Guide to Getting the Most from Your
Scylla Database. url: https://www.scylladb.com/wp-content/uploads/guide-
maximizing-scylla-performance-1.pdf.

[10] ScyllaDB. MIGRATION GUIDE:Apache Cassandra to Scylla. url: https : / / www .
scylladb.com/wp-content/uploads/Cassandra-to-Scylla-Migration-Guide.pdf.

[11] ScyllaDB. NoSQL and NewSQL: A Comparison of Distributed Database Systems. url:
https://go.scylladb.com/nosql-to-newsql-distributed-database-wp-offer.
html.

[12] ScyllaDB. Reducing Complexity with a Self-Optimizing Database. url: https://go.
scylladb.com/self-optimizing-database-offer.html.

[13] ScyllaDB. SQL to NoSQL: Architecture Differences and Considerations for Migration.
url: https://go.scylladb.com/sql-to-nosql-architecture-wp-offer.html.

[14] A. Singh. Instant Cassandra Query Language. **. Packt Publishing, 2013. isbn: 9781783282722.
url: https://books.google.pl/books?id=%5C_eP7AAAAQBAJ.

[15] Stack Overflow Survey. url: https://insights.stackoverflow.com/survey/2020#
technology-programming-scripting-and-markup-languages-professional-developers.

31

https://cassandra.apache.org/doc/latest/cql/index.html
https://cassandra.apache.org/doc/latest/cql/index.html
https://docs.rs/scylla/0.1.0/scylla/
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1109/COMSNETS.2017.7945437
https://go.scylladb.com/whitepaper-scaling-up-vs-scaling-out-offer.html
https://go.scylladb.com/whitepaper-scaling-up-vs-scaling-out-offer.html
https://cvybhu.github.io/scyllabook/index.html
https://cvybhu.github.io/scyllabook/index.html
https://go.scylladb.com/switch-reasons-datastax-scylla-offer.html
https://go.scylladb.com/switch-reasons-datastax-scylla-offer.html
https://go.scylladb.com/real-time-big-data-database-principles-offer.html
https://go.scylladb.com/real-time-big-data-database-principles-offer.html
https://www.scylladb.com/wp-content/uploads/guide-maximizing-scylla-performance-1.pdf
https://www.scylladb.com/wp-content/uploads/guide-maximizing-scylla-performance-1.pdf
https://www.scylladb.com/wp-content/uploads/Cassandra-to-Scylla-Migration-Guide.pdf
https://www.scylladb.com/wp-content/uploads/Cassandra-to-Scylla-Migration-Guide.pdf
https://go.scylladb.com/nosql-to-newsql-distributed-database-wp-offer.html
https://go.scylladb.com/nosql-to-newsql-distributed-database-wp-offer.html
https://go.scylladb.com/self-optimizing-database-offer.html
https://go.scylladb.com/self-optimizing-database-offer.html
https://go.scylladb.com/sql-to-nosql-architecture-wp-offer.html
https://books.google.pl/books?id=%5C_eP7AAAAQBAJ
https://insights.stackoverflow.com/survey/2020#technology-programming-scripting-and-markup-languages-professional-developers
https://insights.stackoverflow.com/survey/2020#technology-programming-scripting-and-markup-languages-professional-developers

[16] Nishant Suneja. “Scylladb optimizes database architecture to maximize hardware per-
formance”. In: IEEE Software 36.4 (2019), pp. 96–100. doi: 10.1109/MS.2019.2909854.

[17] Tokio framework. url: https://tokio.rs.

32

https://doi.org/10.1109/MS.2019.2909854
https://tokio.rs

	Introduction
	Motivation
	Scylla
	Rust
	Project's main objectives
	Contents

	Requirements
	Development platform
	Rust as a language
	Tokio and asynchronous operation in Rust

	Scylla Database
	Testing and Containerization
	Other compatible databases

	Driver

	Architecture
	Introduction
	Public interface components
	Internal components

	Prepared statement
	Batch statements
	Metrics
	Retry policy
	Load balancing
	Round robin load balancing policy
	Datacenter-aware round robin load balancing policy
	Token-aware round robin load balancing policy
	Token-aware datacenter-aware round robin load balancing policy
	Shard-aware load balancing

	Speculative execution
	Simple speculative execution policy
	Percentile speculative execution policy

	Topology
	Handling topology changes
	Handling events pushed by server

	Value passing using rust type system
	CQL support
	Error handling
	Documentation

	Benchmarking
	Summary
	Team work organization
	Issues
	Pull Requests
	Reviews
	Open source

	Division of tasks
	Files attached to the thesis
	Testing

