
BEST PRACTICES GUIDE

Maximizing Scylla
Performance
A Guide to Getting the Most from Your Scylla Database

2

The purpose of this guide is to provide an overview of the best practices

for maximizing the performance of Scylla, the next-generation NoSQL

database. Even though Scylla auto-tunes itself for optimal performance,

users still need to apply best practices in order to get the most out of their

Scylla deployments.

Get me up and running
In case you are not able to read this document in full, here are the most important

things to remember:

•	use the best hardware you can reasonably afford

•	 install Scylla Monitoring Stack

•	run scylla_setup script

•	use Cassandra stress test

•	expect to get at least 12.5K operations per second (OPS) per physical core
for simple operations on selected hardware

Why should I read this? I already know how to
execute a benchmark
Scylla is different from any other NoSQL database. It achieves the highest levels of

performance and takes full control of the hardware by utilizing all of the server cores

in order to provide strict SLAs for low-latency operations. If you run Scylla in an

over-committed environment, performance won’t just be linearly slower — it will tank

completely.

This is because Scylla has a reactor design that runs on all the (configured) cores

and a scheduler that assumes a 0.5 ms tick. Scylla does everything it can to control

queues in userspace and not in the OS/drives. Thus it assumes the bandwidth that

was measured by scylla_setup.

3

However, it is not difficult to get the best performance out of Scylla. It primarily tunes

itself automatically. Just make sure you don’t work against the system.

Install Scylla Monitoring Stack
Install and use the Scylla Monitoring Stack, which provides excellent additional value

above and beyond performance optimization. If you cannot pinpoint a performance

bottleneck, you likely have not configured the system correctly. Scylla Monitoring

Stack will help to sort this out.

With the recent addition of the Scylla Advisor to the Scylla Monitoring Stack, it is now

even easier to find potential issues.

Install Scylla Manager
Install and use Scylla Manager together with the Scylla Monitoring Stack. Scylla

Manager provides automated backups, and repairs of your database. Scylla Manager

can manage multiple Scylla clusters and run cluster-wide tasks in a controlled and

predictable way.

https://monitoring.docs.scylladb.com
https://www.scylladb.com/2021/02/03/introducing-the-new-scylla-monitoring-advisor/
https://scylladb.github.io/scylla-manager
https://monitoring.docs.scylladb.com

4

Run scylla_setup
Before running Scylla, it is critical that the scylla_setup script has been executed.

Scylla doesn’t require manual optimization – it is the task of the scylla_setup script to

determine the optimal configuration. If scylla_setup has not run, the system won’t be

configured optimally.

 Read more here.

Benchmarking best practices
Use a representative environment

Execute benchmarks on an environment that reflects your production environment.

Benchmarking on the wrong environment can easily lead to an order-of-magnitude

performance difference. For example, on a laptop you might see 20K OPS while

on a dedicated server you could easily achieve 200K OPS. Unless you have your

production system running on a laptop, do not benchmark on a laptop.

We recommend automating your benchmarking with tools like Terraform/Ansible so

you can more easily repeat the benchmark test.

If you are using shared hardware in a containerized/virtualized environment, be aware

that one guest can increase latency in other guests.

Also, make sure you do not underprovision load generators, otherwise the load

generators themselves will be the bottleneck.

Use a representative data model

Tools such as cassandra-stress use a default data model that does not completely

reflect what actions you will perform in production. For example, the cassandra-stress

default data model has a replication factor set to 1 and uses the LOCAL_ONE as a

consistency level.

https://docs.scylladb.com/getting-started/system-configuration/

5

Although cassandra_stress is a convenient way to get some initial performance

impressions, it is critical to benchmark the same/similar data model that you will use

in production. We therefore recommend that you use a custom data model. For more

information refer to the user mode section in our documentation.

Use representative datasets

If you run the benchmark with a dataset that is smaller than your production data,

you may have misleading or incorrect results due to the reduced number of I/O

operations. Therefore, it is critical to configure the size of the dataset to reflect your

production dataset size.

Use a representative load

Run the benchmark using a load that represents, as closely as possible, the load

you anticipate having in production. This includes the queries submitted by the load

generator. When you use the right type of queries, they are distributed over the

partitions and the ratio between read/write remains relatively constant. The read/

write ratio is important due to the overhead of compaction and finding the right data

on disk.

Proper warmup & duration

When benchmarking, it is important to give the system time to warm up. This allows

the database to fill the cache. In addition, it is critical to run the benchmarks long

enough so that at least one compaction is triggered.

Latency test vs throughput test

When performing a load test you will need to differentiate between a latency test and

a throughput test. With a throughput test, you measure the maximum throughput

by sending a new request as soon as the previous request completes. With a latency

test, you pin the throughput at a fixed rate. In both cases, latency is measured.

Most engineers will start with a throughput test, but often a latency test is a better

choice because they know the desired throughput, e.g. 1M op/s. This is especially the

case if your production system must meet a specific SLA. For example, the 99.99

percentile should have a latency less than 10ms.

https://docs.scylladb.com/operating-scylla/admin-tools/cassandra-stress/

6

Coordinated omission

A common problem when measuring latencies is the coordinated omission problem,

which causes the worst latencies to be omitted from the measurements and, as a

consequence, renders the higher percentiles useless. A tool like cassandra-stress

prevents coordinated omission from occurring.

 Read more here.

Don’t average percentiles

Another typical problem with benchmarks is that when a load is generated by

multiple load generators, the percentiles are averaged. The correct way to determine

the percentiles over multiple load generators is to merge the latency distribution of

each load generator and then to determine the percentiles.

If this isn’t an option, then the next best alternative is to take the maximum (the p99,

for example) of each of the load generators.

The actual p99 will be equal to or less than the maximum p99.

 Read more here.

Use proven benchmark tools

Instead of rolling out custom benchmarks, use proven tools like cassandra-stress.

Cassandra-stress is very flexible and takes care of coordinated omission. Yahoo!

Cloud Serving Benchmark(YCSB) is also an option, but needs to be configured

correctly to prevent coordinated omission. TLP-stress is not recommended because it

suffers from coordinated omission.

When benchmarking make sure to use the cassandra-stress that is part of the Scylla

distribution because it contains the shard-aware drivers.

Use the same benchmarking tool

When benchmarking with different tools, it is very easy to run into an apples vs

oranges comparison. When comparing products, use the same benchmark tool, if

possible.

Reproducible results

Make sure that the outcomes of your benchmark are reproducible, so execute your

tests at least twice. If the outcomes are different, then the benchmark results are

unreliable. One potential cause could be that the data set of a previous benchmark

has not been cleaned, which can lead to a performance difference for writes.

http://highscalability.com/blog/2015/10/5/your-load-generator-is-probably-lying-to-you-take-the-red-pi.html
http://pveentjer.blogspot.com/2017/08/percentiles-and-mean.html

Query recommendations
Correct data modeling

The key to a well performing system is using the properly defined data model. A

poorly structured data model can easily lead to an order-of-magnitude performance

difference compared to a proper model.

A few of the most important tips:

•	Choose the right partition key and clustering keys. Reduce or even eliminate
the amount of data that needs to be scanned.

•	Add indexes where appropriate.

•	Partitions that are accessed more than others (hot partitions) should be
avoided because they cause load imbalances between CPUs and nodes.

•	Large partitions, large rows and large cells should be avoided because they
can cause high latencies.

Use prepared statements

Prepared statements provide better performance because: parsing is done

once, token/shard aware routing and less data is sent. Apart from performance

improvements, prepared statements also increase security because they prevent CQL

injection.

 Read more here.

Use paged queries

It is best to run queries that return a small number of rows. But if a query could return

many rows, then an unpaged query can lead to a huge memory bubble and Scylla

could eventually decide to kill the query. With a paged query, the execution collects

a page’s worth of data and new pages are retrieved on demand, leading to smaller

memory bubbles.

 Read more here.

7

https://www.scylladb.com/2017/12/13/prepared-statements-scylla/
https://www.scylladb.com/2018/07/13/efficient-query-paging/

Don’t use reverse queries

When using a query with an ORDER BY clause, you need to make sure that the order

is the same as in the data model. Otherwise you run into a problem called reverse

queries, which can cause unbound memory usage and killed queries.

Use workload prioritization

In a typical application there are operational workloads that require low latency.

Sometimes these run in parallel with analytic workloads that process high volumes

of data and do not require low latency. With workload prioritization, one can prevent

the analytic workloads from negatively impacting the latency-sensitive operational

workload.

 Read more here.

Bypass cache

There are certain workloads, e.g. analytical workloads, that scan through all the data.

By default Scylla will try to use cache, but since the data won’t be used again, it leads

to cache pollution — good data is pushed out of the cache and replaced by useless

data.

This can result in bad latency on operational workloads due to increased rate of

cache misses. To prevent this problem, queries from analytical workloads can bypass

the cache using the ‘bypass cache’ option.

 Read more here.

Batching

Multiple CQL queries to the same partition can be batched into a single call. Imagine

the round trip time being 0.9 ms and the service time time 0.1 ms. Without batching

the total latency would be 10x(0.9+0.1)=10.0 ms. But if you would create a batch of

10 instructions, the total time would be 0.9+10*0.1=1.9 ms. That is 19% of the latency

compared to no batching.

 Read more here.

8

https://docs.scylladb.com/using-scylla/workload-prioritization/
https://docs.scylladb.com/getting-started/dml/#bypass-cache
https://docs.scylladb.com/getting-started/dml/#batch-statement

9

Driver guidelines
Use the Scylla drivers that are available for Java/Python/Go. They provide much

better performance than third-party drivers because they are shard aware – they

can route requests to the right CPU core (shard). When the driver starts, it gets the

topology of the cluster and therefore it knows exactly which CPU core should get a

request.

If Scylla drivers are not an option, make sure that at least a token-aware driver is used

so one round trip is removed.

Check if there are sufficient connections created by the client, otherwise performance

could suffer. The general rule is between 1-3 connections per Scylla CPU per node.

 Read more here.

Hardware guidelines
CPU cores count guidelines

By default Scylla will make use of all CPU cores and is designed to perform well

on powerful machines. As a result, it requires fewer machines. The recommended

minimum number of CPU cores per node for operational workloads is 20.

The rule of thumb is that a single physical CPU can process 12.5 K queries per second

with a payload of up to 1 KB. If a single node should process 400K queries per

second, at least 32 physical CPUs or 64 hyper-threaded cores are required. In cloud

environments hyper-threaded cores are often called virtual CPUs (vCPUs) or just

cores. So it is important to determine if a virtual CPU is the same as a physical CPU

or if it is a hyper-threaded CPU.

Scylla relies on temporarily spinning the CPU instead of blocking and waiting for

data to arrive. This is done to lower latency due to reduced context switching.

https://docs.scylladb.com/using-scylla/drivers-intro/

10

The drawback is that the CPUs are 100% utilized and you might falsely conclude that

Scylla can’t keep up with the load.

 Read more here.

Memory guidelines

During the startup, Scylla will claim nearly all memory for itself. This is done for

caching purposes to reduce the number of I/O operations. The more memory, the

better the performance.

Scylla recommends at least 2 GB of memory per core and a minimum of 16 GB of

memory for a system (pick the highest value). For example, if you have a 64-core

system, you should have at least 2x64=128 GB of memory.

The max recommended ratio of storage/memory for good performance is 30:1. So

for a system with 128 GB of memory, the recommended upper bound on the storage

capacity is 3.8 TB per node of data. To store 6 TB of data per node, the minimum

recommended amount of memory is 200 GB.

 Read more here and here.

Storage guidelines

Scylla can utilize the full potential of modern NVMe SSDs. The faster the drive, the

better the Scylla performance. If there is more than one SSD,

it is recommended to use them as RAID 0 forbest performance. This is configured

during the scylla_setup and Scylla will create the RAID

device automatically. If there is limited SSD capacity, the commit log should be

placed on the SSD.

The recommended file system is XFS because

of its support for asynchronous appending writes and because it is the primary file

system with which ScyllaDB is tested.

Because SSDs wear out over time, it is recommended to rerun the iotune tool every

few months. This will help Scylla’s IO scheduler make the best performing choices.

 Read more here.

Networking guidelines

For operational workloads the minimum recommended network bandwidth is 10

Gbps. The scylla_setup script takes care of optimizing the kernel parameters, IRQ

handling, etc.

 Read more here.

https://docs.scylladb.com/getting-started/system-requirements/
https://docs.scylladb.com/getting-started/system-requirements/
https://docs.scylladb.com/getting-started/scylla_in_a_shared_environment/
https://docs.scylladb.com/getting-started/system-requirements/
https://docs.scylladb.com/getting-started/system-requirements/#network-requirements

11

Cloud compute instance recommendations
Scylla is designed to utilize all hardware resources. Bare metal instances are preferred

for best performance.

 Read more here.

Image guidelines

Use Scylla provided AMI on AWS EC2, if possible. They have already been correctly

configured.

AWS

AWS EC2 i3, i3en and cd5 bare metal instances are highly recommended because

they are optimized for high I/O.

 Read more here.

If bare metal isn’t possible, use Nitro-based instances and run with ‘host’ as tenancy

policy. This will prevent the instance being shared with other VMs.

If the recommendation above isn’t possible, we recommend instance storage over

EBS. If instance store is not an option, use an io2 IOPS provisioned SSD for best

performance. If there is limited support for instance storage, place the commit

log there. There is a new instance type available called r5b that has high EBS

performance.

 Read more here.

GCP

For GCP we recommend n1/n2-highmem with local SSDs.

 Read more here.

Azure

For Azure we recommend the Lsv2 series. They feature high throughput and low

latency and have local NVMe storage.

 Read more here.

https://docs.scylladb.com/getting-started/scylla_in_a_shared_environment/
https://docs.scylladb.com/getting-started/system-requirements/#supported-platforms
https://aws.amazon.com/blogs/aws/new-amazon-ec2-r5b-instances-providing-3x-higher-ebs-performance/
https://docs.scylladb.com/getting-started/system-requirements/#google-compute-engine-gce
https://docs.scylladb.com/getting-started/system-requirements/#microsoft-azure

Docker
When running in the Docker platform, please use CPU pinning and host networking

for the best performance.

 Read more here.

Kubernetes
As with Docker, CPU pinning should be used on Kubernetes environments as well. In

this case the pod should be pinned to a CPU so that no sharing takes place.

Data Compaction
When records are updated or deleted, the old data eventually needs to be deleted. This

is done using compaction. The compaction settings can make a huge difference. Check

the following matrix to understand how to configure compaction for your use case:

Incremental Compaction Strategy (ICS) is a feature exclusively available in Scylla

Enterprise. It combines the low space amplification of LCS with the low write

amplification of STCS. ICS is the default strategy for Scylla Enterprise.

If you have time series data, the TWCS should be used.

 Read more here.

12

https://docs.scylladb.com/operating-scylla/procedures/tips/best_practices_scylla_on_docker/
https://docs.scylladb.com/architecture/compaction/compaction-strategies/#which-strategy-is-best

Workload/Compaction Strategy STCS LCS ICS TWCS

Write only + - + -
Overwrite + - + -
Read mostly, with few updates - + - -
Read-mostly with many updates + - + -
Time series - - - +

13

Consistency Level
The consistency level determines how many nodes the coordinator should wait for

in order for the read or write to be considered a success. The consistency level is

determined by the application based on requirements for consistency, availability

and performance. The higher the consistency, the lower the availability and the

performance.

For single data center setups a frequently used consistency level for both reads and

writes is QUORUM. It gives a nice balance between consistency and availability/

performance. For multi-datacenter setups it is best to use LOCAL_QUORUM.

 Read more here.

https://docs.scylladb.com/architecture/architecture-fault-tolerance/

Replication Factor
The recommended replication factor is set to 3, and in most cases this is a sensible

default because it provides a good balance between performance and availability.

Keep in mind that a write will always be sent to all replicas, no matter the consistency

level.

Asynchronous Requests
Using asynchronous requests can help to increase the throughput of the system.

If the latency would be 1 ms, then 1 thread at most could do 1000 QPS. But if an

operation takes a service time of 100 us, with pipelining the throughput could

increase to 10.000 QPS.

To prevent overload due to asynchronous requests, the drivers limit the number of

pending requests to prevent overloading

the server.

 Read more here.

Conclusion
Scylla has excellent performance out of the box. Following the best practices

described in this paper will prevent mistakes that might diminish the performance of

your Scylla deployment.

14

https://www.scylladb.com/2019/11/20/maximizing-performance-via-concurrency-while-minimizing-timeouts-in-distributed-databases/

Copyright © 2021 ScyllaDB Inc. All rights reserved. All trademarks or
registered trademarks used herein are property of their respective owners.

United States Headquarters
2445 Faber Place, Suite 200
Palo Alto, CA 94303 U.S.A.
Email: info@scylladb.com

Israel Headquarters
11 Galgalei Haplada
Herzelia, Israel

SCYLLADB.COM

ABOUT SCYLLADB

Scylla is the real-time big data database. API-compatible
with Apache Cassandra and Amazon DynamoDB, Scylla
embraces a shared-nothing approach that increases
throughput and storage capacity as much as 10X.
Comcast, Discord, Disney+ Hotstar, Grab, Medium,
Starbucks, Ola Cabs, Samsung, IBM, Investing.com and
many more leading companies have adopted Scylla to
realize order-of-magnitude performance improvements
and reduce hardware costs. Scylla’s database is available
as an open source project, an enterprise edition and a
fully managed database as a service. ScyllaDB was
founded by the team responsible for the KVM hypervisor.
For more information: ScyllaDB.com

https://www.scylladb.com/users/
https://www.scylladb.com/

