
SCYLLADB COMPARISON

Scylla vs. Amazon
DynamoDB
Evaluating NoSQL Databases for Performance and Cost

CONTENTS

OVERVIEW			 3

BACKGROUND			 3

CHOOSING THE RIGHT DATABASE: THE BUSINESS VALUE	 4

SUMMARY OF BENCHMARK RESULTS 			 4

PERFORMANCE COMPARISON			 4

COST COMPARISON 			 5

TESTING AGAINST REAL-WORLD DATA DISTRIBUTION		 5

TESTING AGAINST A HOT PARTITION			 6

TESTING AGAINST UNIFORM DATA DISTRIBUTION			 7

ADDITIONAL CONSIDERATIONS 			 7

CROSS-REGION REPLICATION AND GLOBAL TABLES		 7

THE HIGH COST OF CACHING			 8

BEYOND THE LIMITS			 8

ALTERNATOR: SCYLLA’S DYNAMODB-COMPATIBLE API	 8

CONCLUSION			 8

3

OVERVIEW
Over the past decade, NoSQL databases
have carved out a place as the standard data
platform for modern applications that use
unstructured data at scale. These applications
have recently exploded in popularity;
unstructured data makes up 90% of all
corporate data, growing 50 times faster than
traditional structured data.

For this reason, NoSQL databases have
found applications across industries. Within
enterprises, unstructured data often has
multiple uses. It’s valuable for both high speed
operational workloads and for ‘Big Data’
analytics. Use cases that benefit significantly
from NoSQL capabilities include:

•	 Internet of Things, network monitoring,
and time series

•	 Profile management and customer 360

•	 Security monitoring and fraud detection

•	 Product catalogs and shopping carts

•	 AdTech and real-time bidding

The sheer number of NoSQL databases on the
market today makes it difficult to perform detailed
comparisons among available offerings. In this
document, we provide IT leaders with a basis
for comparing two leading NoSQL databases:
Amazon DynamoDB and Scylla NoSQL database.

BACKGROUND
Scylla and DynamoDB are on the same
evolutionary branch of the NoSQL family: highly
scalable, highly distributed databases. Ideas
from the original Google Bigtable and Amazon
Dynamo white papers, which ushered in the
era of NoSQL, helped influence the original
implementation of Cassandra at Facebook.
Cassandra was thereafter made an open source
project of the nonprofit Apache Foundation.

While the original Dynamo was used exclusively
as an internal database at Amazon, its
commercialized successor, DynamoDB, was
released based on the same principles as the
original Dynamo paper.

Scylla entered the market as a reimplementation
of Cassandra, re-written from the ground up
in C++ and re-architected to take advantage
of modern multicore servers using highly
asynchronous communications.

After having achieved feature parity with
Cassandra, Scylla took the evolutionary step
to add DynamoDB API compatibility, dubbed
Project Alternator. Now with Scylla users could
run their DynamoDB workloads anywhere — on
another public cloud, or on-premises.

This image shows the “family tree” of highly scalable
NoSQL databases most closely related to Scylla. Many
of the key concepts found in the original white papers
can be found in the current implementation of Scylla.

As such, Scylla and DynamoDB provide an
excellent case for comparison. While they
share the same technical heritage, Scylla and
DynamoDB diverge significantly in practice.
The differences are best demonstrated through
industry-standard performance benchmarking.
Our goal in this paper is to provide a concrete,
empirical basis for selecting Scylla over
DynamoDB.

In this document, we compare Scylla with
Amazon DynamoDB. The high-level takeaway
of this study is this: Scylla performs significantly

4

better than Amazon DynamoDB under real-
world conditions. It also delivers significant cost
savings over Amazon DynamoDB.

CHOOSING THE RIGHT DATABASE:
THE BUSINESS VALUE
While a database is an infrastructural
component that is rarely, if ever, directly
exposed to your customers, it is the foundation
upon which modern businesses are built. A
solid choice can help anchor organizational
acceleration and growth. But a choice that is
made with only short-term thinking in mind can
lead to severe long-term consequences.

DynamoDB is a very facile database to begin
development with. It is always there as an
option for users of AWS, and many of them drift
towards it for rapid prototyping and getting to
production quickly.

With AWS’ entire infrastructure capabilities
behind them, scalability is essentially near
infinite. However, there are a few issues with this.
First is the problem that comes when you look
at your bill at the end of the month. As your use
of DynamoDB grows, so does your monthly bill.
While those costs may be acceptable during
low-volume early-adoption phases, many
organizations find themselves trapped once
operating at scale.

And this is where the second issue comes into
play. Before ScyllaDB introduced its DynamoDB
compatible API, DynamoDB users could run
their workloads only on AWS. They were locked
in to a single vendor. If they wanted to explore
other options for affordability, they would need
to remodel their data, change their queries to
migrate their data off of DynamoDB to any
other database solution.

This is where Scylla can offer operational
flexibility. Users can negotiate with different
public or private cloud providers to find the
most affordable solution for them. They can
even bring their workloads in house through
an on-premises deployment.

Scylla has been tested on all major cloud
providers, opening the opportunity to run multi-

cloud and hybrid topologies. In practice, a major
Scylla customer in telecommunications runs
Scylla in their own data centers (private cloud)
as well as on AWS instances, simultaneously.
This optionality in itself provides a major benefit
over DynamoDB.

SUMMARY OF BENCHMARK
RESULTS
A high-level rollup of results is provided below.
The test is a widely-used benchmark known as
the Yahoo! Cloud Serving Benchmark (YCSB),
which is considered the open standard for
comparative performance evaluation of data
stores. YCSB was developed at Yahoo! Labs
to provide a framework and common set of
workloads for evaluating the performance of
different key-value stores

The benchmark defines a Service Level
Agreement (SLA) of 120,000 operations
per second, split evenly between reads and
writes, with latency less than 10ms in the 99%
percentile. Each database is provisioned with
the minimum resources necessary to meet this
SLA. Each database is populated first with 1
billion rows using the default, 10-column schema
defined by the YCSB.

PERFORMANCE COMPARISON
The Yahoo! Cloud Serving Benchmark revealed
the following:

•	 DynamoDB missed the required SLA multiple
times, especially during the population phase.

•	 DynamoDB has 3x-4x the latency of
Scylla, even under conditions favorable to
DynamoDB

•	 DynamoDB is 7x more expensive than Scylla

•	 Dynamo was extremely inefficient in a real-life
(Zipfian) distribution, requiring 3x capacity
and 20x higher costs than Scylla

•	 Scylla demonstrated up to 20x better
throughput in the hot-partition test with lower
latency numbers

https://github.com/brianfrankcooper/YCSB/wiki

5

COST COMPARISON
Furthermore, the test demonstrates that
Scylla delivers these performance gains
while significantly reducing the total cost of
ownership, even when running Scylla on AWS
instances. The cost savings are summarized
below.

An added consideration, which is not included in
this TCO calculation, is the cost associated with
operational overhead.the human intervention
required to monitor and maintain database
infrastructure. Scylla requires only 3 medium
powered instances to meet the YCSB SLA.
When compared with similar NoSQL databases
(notably Apache Cassandra), this Scylla cluster
is small and therefore more easily managed
and maintained than larger clusters of smaller
instances.

(For organizations looking to completely offload
management, Scylla Cloud provides a fully
managed version of Scylla. Depending on the
plan selected, Scylla Cloud is 4-6x less expensive
than DynamoDB.)

TESTING AGAINST REAL-WORLD
DATA DISTRIBUTION
Ideally you design data schemas to produce a
uniform distribution of primary keys. In practice,
however, some keys are accessed more than
others — “hot keys” — resulting in a situation
referred to as “Zipfian Distribution.” For
example, it’s common practice to rely on a UUID
to query customers, or product IDs to query the
product catalog, and then to retrieve the profile.
Some customers are naturally more active than
others, some products will be more popular
than others, and in many cases a viral product
can skew distributions suddenly.

Thus real-world distributions are often
unpredictable, and the differential in access times
can vary by up to 1000%. Developers are usually
not in a place to improve the situation. Adding
an additional column to the primary key to make
the distribution more granular can improve the
specific access, but at the cost of complexity once
the full customer or product profile is retrieved.

Typical datasets often exhibit Zipfian
distribution. In essence, a Zipfian distribution
reflects the 20/80 power law; 20% of keys
account usually for 80% of queries.

A real-world data set that displays Zipfian Distribution,
a common, real-world pattern among datasets that

affects database performance

Scylla Enterprise
(3 x i3.8xlarge + Scylla

Enterprise license)

Amazon DynamoDB
(160K write | 80K Read

+ Business-level Support)

Year-term Estimated Cost:
~$71K

Year-term Estimated Cost:
~$524K

Assumptions

i3.8xlarge cost: $42,000
(1-year contract, all
upfront payment)

DynamoDB 1-year term:
~$288K

Scylla Enterprise License:
$28.8K /per year

(Total of 48 cores)

Monthly fee : ~$19.7K/
month (~$236K annual)

150 000

200 000

250 000

300 000

350 000

400 000

450 000

500 000

550 000

TCO: ScyllaDB vs. DynamoDB

 1 Yr. Estimated Cost

Pr
ic

e
($

)

100 000

50 000

0

$110,000

$525,000
ScyllaDB

DynamoDB

6

Testing against a dataset with Zipfian
distribution reveals a performance limitation of
DynamoDB. In the results below, note that Scylla
supports a throughput roughly double that of
DynamoDB: 120,000 operations per second,
versus 65,000 for DynamoDB. Both read and
update queries also average double the volume
on Scylla versus DynamoDB.

The takeaway from these results is that normal
data distributions require over-provisioning
capacity on DynamoDB to approach the levels
available with Scylla. Why can’t DynamoDB
meet the SLA in this case? The answer lies
within the DynamoDB model. Global reservation
is divided into partitions, each of which is
limited to 10GB.

Here is the problem: a partition accessed this
way can hit its throttling cap even when overall
traffic is within the global reservation. In the
example above, when reserving 200 writes, each
of the 10 partitions cannot be queried more than
20 writes per second.

TESTING AGAINST A HOT
PARTITION
To explore this ‘hot partition’ issue in greater
detail, we ran a single YCSB benchmark against
a single partition on a 110MB dataset with 100K
partitions. The test exposed a DynamoDB
limitation when a specific partition key
exceeded 3000 read capacity units (RCU) and/
or 1000 write capacity units (WCU).

Even when using only ~0.6% of the provisioned
capacity (857 operations per second),
DynamoDB throttled requests, returning
ProvisionedThroughputExceededException
(otherwise known as Code 400) errors. This
throttling can be seen in the metrics below:

Input source

200 writes/second provisioned

200 writes/second actual

00 01 02 03 04 05 06 07 08 09

of Partitions
(For throughput)

= +RCU for reads

300 RCU
WCU for writes

1000 WCU

of Partitions
(For size)

= Table Size in GB
10 GB

of Partitions MAX()#of Partitions
(For size)

#of Partitions
(For throughput)

=

YCSB Workload Scylla 2.1 (3x i3.8xlarge) DynamoDB (160K WR | 80K RD)

Workload A
50% Read / 50% Write

Range: 1B partitions
Distribution: Zipfian
Duration: 90 minutes
Hot set: 10K partitions
Hot set access: 90%

Overall Throughput (ops/sec): 120.2K
Avg Load (scylla-server): ~55%

Overall Throughput(ops/sec): 65K
Avg Load (scylla-server): ~WR 42% | RD 42%

READ operations (Avg): ~40.56M
Avg. 95th Percentile Latency (ms): 6.1

READ operations (Avg): ~21.95M
Avg. 95th Percentile Latency (ms): 6.0

Avg. 99th Percentile Latency (ms): 8.6 Avg. 99th Percentile Latency (ms): 9.2

UPDATE operations (Avg): ~40.56M
Avg. 95th Percentile Latency (ms): 4.4
Avg. 99th Percentile Latency (ms): 6.6

UPDATE operations (Avg): ~21.95M
Avg. 95th Percentile Latency (ms): 7.3

Avg. 99th Percentile Latency (ms): 10.8

7

Though the system was provisioned for 75,000
writes per second, and 150,000 reads per second,
in reality, it could achieve only brief peaks of
performance at 750 reads per second (with the
max, as stated, of 857 reads per second), and only
around 1,000 writes per second.

In contrast, Scylla still performed reasonably
well under the same conditions: 20,200
operations per second with good 99% latency
against a single partition.

TESTING AGAINST UNIFORM DATA
DISTRIBUTION
Since DynamoDB is known to be tricky when
data distribution isn’t uniform, the tests were
also run against a uniform distribution to test

Dynamo within its ‘sweet spot’. To demonstrate,
the benchmark was run against 3 nodes of i3.8xl
for Scylla, with replication of 3 and quorum
consistency level, with the 1TB YCSB dataset
(replicated 3 times).

In this test, DynamoDB met the throughput SLA
of 120,000 operations per second. However, it
failed to meet the latency SLA of 10ms for 99%.

Scylla, on the other hand, easily met the
throughput SLA, with only 58% load and latency.
That was 3x-4x better than DynamoDB and well
below the requested SLA.

ADDITIONAL CONSIDERATIONS

CROSS-REGION REPLICATION AND GLOBAL
TABLES

Globally distributed deployments are affected
by replication speed between datacenters. A
simple comparison showed that DynamoDB
replicated in 370ms on average to a remote
datacenter, while Scylla’s averaged 82ms to
accomplish the same task. Since DynamoDB’s
cross-region replication is built on its streaming
API, it seems that congestion has the potential
to grow into a multi-second gap.

Unlike DynamoDB, Scylla enables administrators
to quickly add regions on demand with a single
command:

ALTER KEYSPACE mykespace WITH replication
= { ‘class’ : ‘NetworkTopologyStrategy’,
‘replication_factor’: ‘3’, ‘<exiting_dc>’
: 3, <new_dc> : 4};

Scylla Enterprise Cluster Amazon DynamoDB
Provisioned Capacity

i3.8xlarge | 32 vCPU | 244
GiB | 4 x 1.9TB NVMe

160K write | 80K read
(strong consistency)

3-node cluster on single
DC | RF=3

Dataset: ~1.1TB (1B
partitions / size: ~1.1Kb)

Dataset: ~1.1TB (1B
partitions / size: ~1.1Kb)

Storage size: ~1.1 TB
(DynamoDB table metrics)

Total used storage:
~3.3TB

8

In DynamoDB, on the other hand, global tables
must be defined in advance. This imposes a
significant obstacle to scalability, and a major
cost as datacenters grow over time.

THE HIGH COST OF CACHING

DynamoDB provides an optional in-memory
cache called DynamoDB Accelerator
(DAX). DAX can improve performance, and
DynamoDB’s high cost can be reduced in some
cases by using DAX. In contrast, Scylla has a
much smarter and more efficient embedded
cache (please read our earlier blog post for
more details).

BEYOND THE LIMITS

DynamoDB imposes a 400KB size limit on the
size of each cell. Scylla supports cells that can
be measured in megabytes. In at least one
production use case, Scylla has been deployed
as a storage system for large blobs with single-
digit millisecond latency.

DynamoDB cannot store items larger than 10GB,
yet another problematic limit in DynamoDB
caused by the way it designed its partition
limits. While it’s not a recommended pattern,
some Scylla customers store 130GB items in a
single partition. The effect of these higher limits
is more freedom in data modeling and fewer
limitations on future requirements.

ALTERNATOR: SCYLLA’S
DYNAMODB-COMPATIBLE API
In 2019, Scylla introduced Project Alternator,
open-source software that enables application-
and API-level compatibility between Scylla and
DynamoDB. With Alternator, DynamoDB users
can seamlessly transition to Scylla Open Source
for better performance, lower costs and no
vendor lock-in.

Scylla’s DynamoDB API can be deployed on
premises, on public clouds like Microsoft Azure
or Google Cloud Platform, or on AWS. On
AWS Scylla users can take advantage of other

aspects of the Amazon cloud ecosystem, such
as high-density i3en instances. DynamoDB users
can run existing client applications with no
modifications. Alternator is written in C++ and is
a part of Scylla.

Alternator gives developers greater control over
large-scale, real-time big data deployments,
starting with costs. A typical Scylla cluster will
cost 10%-20% the expense of the equivalent
DynamoDB table. Alternator also frees
developers to access their data without limits by
eliminating payment per operation — they can
run as many operations as their clusters support,
keeping costs low and predictable.

Alternator gives operators control over the
number of replicas as well as the balance of cost
versus redundancy to suit their applications.
Operators can set and change the replica
number per data center, the number of zones,
and the consistency level on a per-query basis.

For more information on Project Alternator,
please visit scylladb.com/alternator.

CONCLUSION
Selecting a NoSQL database can be a daunting
task; the benefits must be clearly defined
and the risks mitigated by whatever means
necessary. The goal of this paper has been to
provide a fair and factual basis for comparing
Amazon’s well-known DynamoDB against the
relative newcomer, Scylla.

If you’d like to try your own comparison,
remember that Scylla is open source. Feel free
to download now. Please contact us if you
have any questions about how we stack up or
if you’d like to share your own results. Or start
by running a cloud-hosted Scylla Test Drive,
which lets you spin-up a hosted Scylla cluster
in minutes. We’ll end with a final reminder that
our Scylla Cloud is built on Scylla Enterprise,
delivering similar price-performance advantages
while eliminating administrative overhead. A
free trial of Scylla Cloud is available at cloud.
scylladb.com/user/signup

https://www.scylladb.com/2017/07/31/database-caches-not-good/
http://www.scylladb.com/alternator
https://www.scylladb.com/download/
https://www.scylladb.com/company/contact-us/
https://cloud.scylladb.com/user/signup
https://cloud.scylladb.com/user/signup
https://cloud.scylladb.com/user/signup

Copyright © 2020 ScyllaDB Inc. All rights reserved. All trademarks or
registered trademarks used herein are property of their respective owners.

SCYLLADB.COM

ABOUT SCYLLADB
Scylla is the real-time big data database. A drop-in
alternative to Apache Cassandra and Amazon DynamoDB,
Scylla embraces a shared-nothing approach that increases
throughput and storage capacity as much as 10X that
of Cassandra. Comcast, Banco Santander, Samsung,
Starbucks, Johnson & Johnson, Discord, Fanatics, FireEye,
Lookout, Grab and many more leading companies have
adopted Scylla to realize order-of-magnitude performance
improvements and reduce hardware costs.

Scylla is available in Open Source, Enterprise and fully
managed Cloud editions. ScyllaDB was founded by the
team responsible for the KVM hypervisor and is backed
by Bessemer Venture Partners, Eight Roads Ventures,
Innovation Endeavors, Magma Venture Partners, Qualcomm
Ventures, Samsung Ventures, TLV Partners, Western Digital
Capital and Wing Venture Capital.

For more information: ScyllaDB.com

United States Headquarters
2445 Faber Place, Suite 200
Palo Alto, CA 94303 U.S.A.
Email: info@scylladb.com

Israel Headquarters
11 Galgalei Haplada
Herzelia, Israel

https://www.scylladb.com/users/
http://www.scylladb.com

