
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Adam Boguszewski
Student no. 417730

Maciej Herdon
Student no. 418267

Marcin Mazurek
Student no. 359831

Gor Stepanyan
Student no. 404865

Library for Scylla Change Data
Capture in Rust

Bachelor’s thesis
in COMPUTER SCIENCE

Supervisor:
dr Janina Mincer–Daszkiewicz
Institute of Informatics

Warsaw, June 2022

Abstract

Change Data Capture (CDC) is a feature of the Scylla database that tracks all changes
performed in a table. The logs of those changes are stored in a separate table and can be
queried just like normal data.

The purpose of this thesis is to describe the process of creation of an open–source library
for managing Scylla CDC feature in a relatively new programming language – Rust. Our main
task was to implement a standalone library for interacting with CDC and an application for
data replication that uses this library, but during the process we also had to modify the Scylla
Rust Driver, which was developed in 2020 by students from the University of Warsaw.

Keywords

Scylla, database, Rust, asynchronous programming, Change Data Capture

Thesis domain (Socrates-Erasmus subject area codes)

11.3 Informatics, Computer Science

Subject classification

Software and its engineering
Software creation and management

Designing software
Software design engineering

Tytuł pracy w języku polskim

Biblioteka dla Scylla Change Data Capture w języku Rust

Contents

1. Introduction . 5

2. Problem overview . 7
2.1. Motivation . 7

2.1.1. Environment matters . 7
2.1.2. Rust’s growth to power . 7
2.1.3. CDC Overview . 7
2.1.4. Task description . 8

2.2. Technical challenges . 8
2.2.1. Scylla architecture . 8
2.2.2. Implications for the log table . 8
2.2.3. CDC partitioner . 8
2.2.4. Asynchronuous programming . 9

2.3. Summary . 9

3. Solution . 11
3.1. Library for CDC . 11

3.1.1. Architecture overview . 11
3.1.2. Module consumer.rs . 11
3.1.3. Module stream_reader.rs . 12
3.1.4. Module stream_generations.rs . 13
3.1.5. Module checkpoints.rs . 14
3.1.6. Module log_reader.rs . 15
3.1.7. Scylla Rust Driver improvements . 16

3.2. Scylla-cdc-printer . 16
3.3. Scylla-cdc-replicator . 16
3.4. Summary . 17

4. Validation . 19
4.1. Tests . 19

4.1.1. Unit tests . 19
4.1.2. End-to-end tests . 19
4.1.3. Replicator integration tests . 19

4.2. Benchmarks . 20
4.2.1. Method . 20
4.2.2. The first try . 20
4.2.3. The second try . 21
4.2.4. Conclusions . 23

3

4.3. Summary . 23

5. Summary . 25
5.1. Conclusions . 25

5.1.1. Project results . 25
5.1.2. Future of the library . 25

5.2. Work division . 25

Bibliography . 27

4

Chapter 1

Introduction

Scylla is a distributed, real–time big data database that is API–compatible with Apache Cas-
sandra and Amazon DynamoDB. Scylla embraces a shared–nothing approach that increases
throughput and storage capacity to realize order–of–magnitude performance improvements
and reduce hardware costs [9].

Starting from version 4.3, Scylla introduces the Change Data Capture [3] feature that
allows to query the history of all changes made to a table in a database. The history is stored
in a separate table and can be read like normal data. Some example use cases mentioned by
the authors are:

• Heterogenous database replication,

• Implementing a notification system,

• In–flight analytics.

Although the CDC logs stored in a database table can be read with a Scylla driver or even a
command–line application like cqlsh, the log format is too complicated to be used comfortably
in this way. A hypothetical user would have to understand well the design of Scylla CDC.
The main purpose of a library for CDC is to allow users to concentrate on business logic in
their projects and not low–level intricacies of Scylla. Such libraries already exist for Go and
Java, but thanks to the recently developed Scylla Rust Driver it is possible to create one for
Rust, which will be a great addition for applications written purely in this language.

Our main task was to implement a convenient interface for interacting with CDC as a stan-
dalone library. The project uses asynchronous programming, with Rust–native async/await
construction and Tokio runtime [16]. Because the Scylla Rust Driver is a new product, during
the process we also had to tweak its codebase to suit our needs, for example to fetch metadata
from the cluster or to add support for CDC partitioner, a hash function that computes which
data is stored on which node in the cluster. The project also includes some example uses for
this feature, the most important being the data replicator that copies data from one cluster
to another. Naturally, the tests, the documentation and the benchmarks are also part of this
project.

The thesis consists of the following chapters:

• Chapter 2 contains a general overview of the problem, mentioning difficulties in regard
to both Scylla and Rust.

• Chapter 3 presents all elements of the solution in detail.

5

• Chapter 4 describes the tests, the benchmarks and their results.

• Chapter 5 is a summary of the whole thesis.

The project belongs to the free and open–source software in its entirety, so every stage of
the project is documented in detail and this thesis is just a summary of it.

6

Chapter 2

Problem overview

2.1. Motivation

2.1.1. Environment matters

To build a successful product that will appeal to the hearts (and wallets) of software engineers
all around the world it is not enough to strive for excellence in the product itself (although
very much required) but one has to build and entire environment of tools around the product
that will allow developers to comfortably interact with the product in a programmatic way.
Well written tools encourage engineers to make use of the product in their projects while
poorly thought out ones and even more so lack of them clearly discourage. This is very well
understood at ScyllaDB where efforts are being made to provide libraries for interactions with
Scylla in most popular programming languages. There has been some progress in achieving
this in languages such as Go [6, 12], Java [7, 11], Python [8] but lately (since 2020) ScyllaDB’s
attention has shifted to Rust.

2.1.2. Rust’s growth to power

Rust as of 15th March 2022 is still considered a young language but its popularity is mas-
sively growing. According to the StackOverflow’s yearly Developer Survey, Rust is number
one among the most loved programming languages since 2016 [15]. In 2020 it has entered
into the top 20 of the most popular languages according to the same survey [14]. Such an
accomplishment could not go unnoticed and a proper tooling for Rust has had to be provided.
In 2020 ScyllaDB started to work on a client–side driver library for Scylla written in Rust [10].
This work, although far from finished, has laid a solid enough foundation for development of
other required tooling. Among such tools is a library for interaction with Scylla Change Data
Capture (from this point on referred to as Scylla CDC or simply CDC).

2.1.3. CDC Overview

Scylla CDC is an optional feature that can be enabled for each Scylla table individually.
CDC creates a separate table, called Log Table, which stores additional information about
every operation made on the original table, called the Base Table. It contains information
such as what kind of operation was performed, whether a value was deleted as a result of
the operation, timestamp of the operation and much more. As a result, it enables the users
to track every single change made to a database which, for example, can be crucial in data
analysis.

7

2.1.4. Task description

Our task was to provide an open–source library for high level interaction with Scylla CDC
in Rust. Such a library has had its counterparts in Go [6] and Java [11]. This required to
write on top of existing Scylla Rust Driver but also to expand the driver as it lacked CDC
partitioner implementation (explained in subsection 2.2.3) and it did not provide sufficient
metadata making database’s schema introspection impossible. Moreover we were supposed to
create two applications using the aforementioned library — one of them being printer app that
writes to the standard output all the rows from CDC Log and the other one being replicator
app to replicate changes from one Scylla table to another one using CDC Log.

2.2. Technical challenges

Without doubt, one of the most characteristic features of the Scylla database is the scalability,
which implies some non–trivial solutions in the architecture. Due to that, the structure of the
CDC log is also affected.

2.2.1. Scylla architecture

A cluster is a collection of nodes (Scylla instances). This structure is visualized as a ring. A
collection of tables, analogous to databases in SQL, is called a keyspace. Data in Scylla can
be stored on many nodes and the number of them is called the Replication Factor. This value
is set by the user for every keyspace during its creation.

In order to enable the process of data distribution while keeping the possibility to read
the data quickly, the primary keys in Scylla consist of two other keys: the partition key and
the clustering key. The former is responsible for distributing the data between the nodes
by dividing it into partitions (a subset of data with the same partition key). The latter is
optional, and its role is to indicate how to sort the data within given partition.

As mentioned, partition key is used to identify the node in the cluster the partition belongs
to. This is done using the partitioner. It calculates a token for each partition key. The set of all
possible tokens is divided in continuous ranges. Such a range is called a virtual node or simply
a VNode. Each physical node has some virtual nodes assigned to it (a single VNode may be
assigned to multiple physical nodes to achieve desired data replication) and that assignment
may change in reaction to cluster topology changes such as node addition or removal.

2.2.2. Implications for the log table

Because the log table is a table like any other, it also must follow these rules. The clustering
key for this table comprises the time column and the column with a number of operations in
a batch. The partition key is a binary large object (blob) value called a stream. Streams are
the main reason, why reading the log data is not trivial. They are closely related to the data
distribution between the nodes and change when a new node joins the cluster. A set of stream
ids that are valid in the same time is called a stream generation. Because the structure of
the log table does not order every operation by time, it is essential to pay attention to the
moment when the generations change if we want to process the log in chronological order.

2.2.3. CDC partitioner

The ring nodes corresponding to the given partition key are calculated using a hashing function
called partitioner — by default Murmur3 [1], however in case of log tables the partitioner is

8

the primary key itself. Every clever driver should be aware of this in order to send its queries
directly to the proper nodes saving time and network exhaustion. However Scylla Rust Driver
had only the default partitioner implementation and treated log tables as every other table,
so CDC partitioner had to be additionally implemented.

2.2.4. Asynchronuous programming

Aforementioned structure of the log table makes it convienient to read it concurrently. Because
this requires many in–out operations with the database, asynchronuous programming is suited
better to this task than the traditional, synchronuous approach. Rust supports this through
built–in async/await construction. In this project we are using Tokio — asynchronous runtime
built on top of Rust language.

Tokio by default is using work–stealing based thread pool along with a cooperative task
yielding to reduce latencies tied to the I/O bound nature of our library. The runtime provides
a high level of abstraction and common tools like tasks or channels, so it has low entry
threshold.

2.3. Summary

This chapter introduced basic concepts of Scylla Change Data Capture and reasons for de-
veloping a library in Rust that simplifies reading the CDC log — the simplification of the
process and potential demand for such a library in a flourishing programming language.

The next chapter will describe in detail the solution delivered by our team.

9

Chapter 3

Solution

The result of our work is an open source library available at https://github.com/piodul/
scylla-cdc-rust, facilitating development of applications that read and process data from a
CDC log of the Scylla database and a pair of applications (scylla-cdc-printer and scylla-cdc-
replicator) demonstrating it, available in the same repository.

3.1. Library for CDC

3.1.1. Architecture overview

Our work consists of a couple of loosely connected modules. Those are:

• cdc_types.rs,

• consumer.rs,

• stream_reader.rs,

• stream_generations.rs,

• checkpoints.rs,

• log_reader.rs.

First one introduces utility types such as GenerationTimestamp and StreamID. The other ones
are more complex so they require our special attention. In addition to this, our efforts on
improving Scylla Rust Driver will also be discussed.

3.1.2. Module consumer.rs

From the user’s perspective, probably the most important aspect of a library is its interface.
In our case, this especially means the way the user can react to upcoming data from the
database.

Out of all options for using user’s code that Rust offers, the most convienient one are the
traits. Traits can be considered as something similar to interfaces in object-oriented languages,
but they also share some common concepts with type classes from functional languages like
Haskell. To be concise, to implement a trait for a struct in Rust, one has to implement all
functions related to that trait, which is almost identical to implementing an interface in an
object-oriented programming language.

11

https://github.com/piodul/scylla-cdc-rust
https://github.com/piodul/scylla-cdc-rust

Therefore, in order to consume data using our library, the user has to create a struct
implementing the Consumer trait defined by us:
#[async_trait]
pub trait Consumer {

async fn consume_cdc (&mut self , data: CDCRow <’_>) -> anyhow ::Result <()>;
}

This trait requires only one function to be implemented, which should be responsible for
processing the data received from the database.

The data passed to this function is represented by a CDCRow struct. It represents a single
row in the observed table in the database. The user can get all the column values from the
log table just using a name of a corresponding column in the base table. An important fact
to notice is that due to CDCRow’s internal structure and how the memory management works
in Rust, the CDCRow instances cannot be used after the function has finished, and if the user
wants to save the data for later, they should map it to some other data structure.

Since the library works concurrently, many instances of Consumer need to exist in order to
consume data simultaneously. Because of that, the user is also required to create a struct
implementing another trait — a ConsumerFactory.
#[async_trait]
pub trait ConsumerFactory {

async fn new_consumer (&self) -> Box <dyn Consumer >;
}

This allows our library to create new Consumer instances when necessary.

3.1.3. Module stream_reader.rs

This module provides StreamReader component. It is responsible for querying the CDC logs and
performing custom user defined operations on results. Based on user defined configuration it
periodically fetches data from CDC log. The configuration includes:

• set of stream ids to track changes from,

• start timestamp from which the reader component should read the streams,

• time interval parameters:

– single query time window size,

– safety interval, so that the reader will not try to read data with later timestamp
than the current time,

– sleep interval, to sleep after processing results returned from all streams.

The public interface of this structure is presented below:
pub fn new(

session: &Arc <Session >,
stream_ids: Vec <StreamID >,
start_timestamp: chrono ::Duration ,
window_size: chrono ::Duration ,
safety_interval: chrono ::Duration ,
sleep_interval: time::Duration ,

)

pub async fn fetch_cdc(
&self ,

12

keyspace: String ,
table_name: String ,
mut consumer: Box <dyn Consumer >,

)

pub async fn set_upper_timestamp (&self , new_upper_timestamp: chrono :: Duration)

Calling fetch_cdc starts querying CDC logs of a table given by keyspace and table_name

parameters. The parameter consumer is a Consumer instance created with a ConsumerFactory

provided by the user. The fetching will continue indefinitely unless some upper timestamp
will be provided. It can be done using set_upper_timestamp method. To achieve this it is
important to make these methods async and to properly manage shared upper_timestamp. This
value is internally guarded by tokio::sync::Mutex and these methods have to interact with it
properly. The StreamReader process follows the hereby algorithm:

• Keeps track of start timestamp T, which is either the user provided start_timestamp or
the end timestamp of the last queried window.

• Calculates the end timestamp of the next query window with the following algorithm:

U = max(T,min(T+ window_size, now − safety_interval))

• Queries CDC log rows from the time interval [T, U) from all streams at once in a single
query.

• Processes fetched rows by passing them to the Consumer.

• Ends the process if upper timestamp is set and the end timestamp of the query window
U exceeds the upper timestamp.

• Sleeps for the configured amount of time sleep_interval.

• Repeats from start.

3.1.4. Module stream_generations.rs

One of the most important reasons for creating a library for Scylla CDC is simplification of
the process of reading data in the correct order, which requires understanding how stream
generations work. As mentioned before, a stream generation is set of stream ids valid in the
same time. Scylla instances provide special tables that contain timestamps indicating their
start time and also all the stream ids.

In order to meet that objective, we created a component providing a convenient API with
standard operations for CDC generations:

• Get all generations.

pub async fn fetch_all_generations (&self) ->
anyhow ::Result <Vec <GenerationTimestamp >> {
(...)

}

• Get a generation by a timestamp.

13

pub async fn fetch_generation_by_timestamp(
&self ,
time: &chrono ::Duration ,

) -> anyhow ::Result <Option <GenerationTimestamp >> {
(...)

}

• Given a generation, get the next one.
pub async fn fetch_next_generation(

&self ,
generation: &GenerationTimestamp ,

) -> anyhow ::Result <Option <GenerationTimestamp >> {
(...)

}

• Given a generation, get all stream ids that belong to it. The returned stream ids are
grouped together by VNodes.
pub async fn fetch_stream_ids(

&self ,
generation: &GenerationTimestamp ,

) -> anyhow ::Result <Vec <Vec <StreamID >>> {
(...)

}

Through this API, other components of our library can easily fetch valid stream ids without
worrying about how and when do the generations change.

Every function in the public API was tested using unit tests. For testing purposes we
have hardcoded test tables that have the same schema as the tables containing information
about CDC generations and streams. There was a small problem during testing since tables
containing information about generations and streams use replication factor equal to 3, which
means the data is replicated to 3 different nodes. Querying such table by default needs to
achieve quorum to perform, in our case it means that at least two nodes are needed for the
query to work, so it didn’t work for databases with only a single node. We solved this problem
by creating new_distributed_system_query() function that given a query checks number of nodes
and modifies given query to make it work.

3.1.5. Module checkpoints.rs

In this module, we have created a component responsible for periodically saving progress
during processing CDC rows by our library.

Firstly, we introduce a new type — Checkpoint that consists of the last processed times-
tamp, an ID of the stream that made this checkpoint and a generation of this stream. When-
ever we use the term ’checkpoint’, we mean an object of this type.

Secondly, we introduce a new trait CDCCheckpointSaver that will be a contract for an object
to implements these methods:
async fn save_checkpoint (&self , checkpoint: &Checkpoint)

-> anyhow ::Result <()>
async fn save_new_generation (&self , generation: &GenerationTimestamp)

-> anyhow ::Result <()>
async fn load_last_generation (&self)

-> anyhow ::Result <Option <GenerationTimestamp >>
async fn load_last_checkpoint (&self , stream_id: &StreamID)

-> anyhow ::Result <Option <chrono ::Duration >>

14

To save progress or load previously saved one, the user has to pass an instance of the
object implementing CDCCheckpointSaver to the CDCLogReaderBuilder and set the correct options
in the builder, i.e., whether the readers should save or load progress. CDCLogReaderBuilder will
be briefly described in the next subsection.

We also provided an implementation of the CDCCheckpointSaver that saves checkpoints in a
Scylla’s table. This default implementation stores the latest checkpoint for each stream. It
also stores the information about the latest generation in a special row with stream ID equal
to 0. The user can set TTL for the table with checkpoints. If he doesn’t, the default value of
7 days will be used, i.e., after 7 days Scylla will delete a record.

3.1.6. Module log_reader.rs

The modules described above are used to do various, separate tasks. The module that com-
bines them together and provides an interface for the user to actually use the library is the
log_reader module.

The CDCLogReader component requires many arguments from the user, so we decided to use
the Builder pattern as a way to create a new CDCLogReader. As for the necessary steps, the
user must provide:

• a ConsumerFactory,

• a Session (a component from the Scylla Rust Driver) connected with the database,

• keyspace and table name.

Additionaly, they can also configure some other parameters:

• start and end timestamps,

• time interval parameters,

• configuration options regarding saving and loading progress.

After passing all important arguments to the builder, the user should use the build()

method. It will start processing the CDC log.
The result of build() method of CDCLogReaderBuilder is a tuple with two elements — the

CDCLogReader component and a RemoteHandle. The CDCLogReader allows user to stop reading the
CDC log at any moment. The handle is used to make sure that the reader has stopped
working — one can await the handle to wait until the reader finishes.

The algorithm used in CDCLogReader coordinates usage of all the other modules. It works
in an event loop, waiting for one of the following events:

• change of the stream generation,

• change of the end timestamp,

• end of work of every StreamReader.

In the first iteration, the reader fetches stream ids with the fetch_stream_ids method and
creates a StreamReader for every VNode. The StreamReaders work in separate Tokio tasks. The
reader also configures the checkpoint saver, if checkpoint saving was enabled.

During the next iterations, the reader waits for one of the aforementioned events. If there
is a new generation, the StreamReaders are told to read data only until the new generations
starts. If the user changes the end timestamps, all StreamReaders are notified about this fact.
Finally, if every StreamReader finished its job, the reader checks if the reading should be finished.
If yes, it ends its execution. If no, the same steps as during the first iteration are repeated.

15

3.1.7. Scylla Rust Driver improvements

Schema metadata

The structure SessionConfig has gained a new field — fetch_schema_metadata and SessionBuilder

corresponding method. This parameter (false by default for the sake of efficiency) determines
if schema metadata fetch will be performed periodically. If so the driver will query for all
keyspaces, tables, columns, user defined types and partitioners and save the data. It can
be accessed by get_cluster_data method in Session. This provides the possibility of schema
introspection by Scylla Rust Driver clients.

Result metadata

Similarly metadata for query results had to be provided. To this end structures RowIterator

and TypedRowIterator have gained pub fn get_column_specs(&self) -> &[ColumnSpec] methods.

CDC Partitioner

Support for CDC-specific partitioning scheme in Scylla Rust Driver was provided by refac-
toring token calculation logic, making it partitioner aware and finally implementing the CDC
partitioner.

3.2. Scylla-cdc-printer

This is a very basic toy program made to demonstrate the ability of the library to interact
with CDC log. It simply tracks the given table and prints the CDC log to the standard
output.

3.3. Scylla-cdc-replicator

This one is yet another program built on top of our library but this time more complex. Scylla-
cdc-replicator is a program that subscribes to the given table and replicates changes made in
it in another given table using CDC log. Support was provided for all CDC operations, such
as:

• row insert,

• row update,

• row delete,

• partition delete,

• range delete.

It works with all types supported by Scylla including User Defined Types.

16

3.4. Summary

This chapter presented concrete elements of the created library, such as the user interface and
the components responsible for fetching the data from the database. It has also mentioned
necessary changes in the Scylla Rust Driver and example applications that use the library.

The next chapter will focus on the methods used to verify the correctness and usefulness
of the library.

17

Chapter 4

Validation

In order to verify that the library works correctly, we have run benchmarks and various types
of tests.

4.1. Tests

The library was tested with three different types of tests. All of them are acceptance tests
and have passed.

4.1.1. Unit tests

First of all, there are standard unit tests for every module, which check the basic functionality
of the library. These tests were written natively in Rust and can be run easily by using the
Rust-native cargo test tool. Most of them connect to a Scylla cluster to verify that the
functionalities work with real data.

A special case of the unit tests are the tests created for the replicator. These tests
check if every type of operation with every type of data is replicated correctly, without
using the library. To achieve that, we created a small framework that facilitates adding
the data to the database, replicating and comparing the results — it is located in the file
scylla-cdc-replicator/src/replication_tests.rs in the repository.

4.1.2. End-to-end tests

The purpose of these tests was to check that one of the most important assets of the library
works — namely, that changes referring to the same partition key are read in a chronological
order and no row is missed during the process. To verify that, the tests perform some oper-
ations on a table and remember their order for each partition key. After that, the library is
used to track all the changes and also remember their order for each partition key. Finally,
both sets of operations are being compared to check if the chronological order was preserved
by the library. These tests also have been written natively in Rust and are located in the file
scylla-cdc/src/e2e_tests.rs.

4.1.3. Replicator integration tests

The last type of tests we used are tests of one of our example applications — the replicator.
These tests verify that the replicator replicates the data correctly.

19

These tests were provided by ScyllaDB and were originally created for the Java version of
the replicator. Due to that, we had to make some changes so that they work with our version
of the replicator. The source code of the tests is located in a repository of a Scylla employee
[4].

4.2. Benchmarks

Performance is one of the most commonly mentioned advantages of Rust. Because of that,
there was a natural urge to test how fast the library works.

4.2.1. Method

At the beginning, we decided to compare the performance of Scylla-cdc-java [11] (on Java
8) with our library. At first, we did not compare with Go version of the library, because it
contained some bugs that showed up when we tested it on such big data. The benchmark
applications for both libraries work in the same way. They start reading from the first CDC
generation in the cluster and then they count the number of read rows, and when that number
reaches a certain value the application stops. To ensure that no row has been read twice, the
applications calculate control sums — they sum all the values of clustering keys. In both
cases, the benchmark applications were based on the printer.

The only varying parameter in these benchmarks was the length of the query window size
— we tested values of 15, 30 and 60 seconds. The safety interval played no role here, because
all the data was written before running the benchmark applications. The sleep interval was
set to one millisecond in the Rust application in order to mimic Scylla-cdc-java’s behavior,
which does not sleep between processing old data.

The input data was written with Scylla-bench [5]. The table used had the default Scylla-
bench schema — partition key and clustering key are of type bigint, while the only value
column is of type blob. The table contained 40000 different partition keys with 2000 clustering
keys for every partition key — 80000000 rows in total. All the corresponding CDC rows were
of type RowInsert.

The results were timed with the GNU time command [2] with flag -v. The value “Percent
of CPU got” refers to sum of values for all cores. For example, value of 200% means that the
application has used amount of CPU time comparable to the amount of time it would use on
2 cores with 100% percent of CPU got for both of them.

The Scylla cluster for benchmark purposes had three nodes, each of them running 14
shards.

The machine on which we launched the benchmarks had 36 CPU cores and 68 gigabytes
of memory.

4.2.2. The first try

The first try of the benchmarks resulted in a small failure. Scylla-cdc-rust did run faster
as shown in Table 4.1, however the elapsed time was not even two times shorter than for
Scylla-cdc-java.

20

Parameter Rust Java
Window query size (s) 15 30 60 15 30 60
User time (s) 118.55 105.71 96.64 571.60 584.82 593.50
System time (s) 20.51 15.87 12.85 266.08 247.48 241.30
Percent of CPU got 50% 58% 60% 245% 245% 247%
Elapsed (wall clock) time (m:ss) 4:35.90 3:28.36 3:01.78 5:41.66 5:39.05 5:36.72

Table 4.1: Results of the first benchmark run

As the metrics have shown, all the requests from the Rust driver were received by the
same single shard, which resulted in big latencies between the requests. When in a CQL
query one or more partition keys did not have corresponding bind marker, e.g. pk IN ? or
pk = function(?), the driver used to get empty information to obtain a token to route the
request to the appropriate shard. As the mentioned queries are valid, the driver will always
calculate a dummy token and all the requests will be routed to the same node/shard. The
problem was quickly discovered and fixed in a way that requests with empty information
about partition keys are detected in the driver and sent to random shards.

Nevertheless, the benchmark still proved some points. First of all, both user and system
time were significantly shorter in the case of Scylla-cdc-rust. Moreover, the percentage usage
of a one core was roughly five times smaller — for Rust it varied between 50% and 60%, while
for Java it varied between 245% and 247%. Both values are relatively low when compared to
the total possible CPU usage, which is 36 · 100%, however it is not a surprise, because both
libraries have to communicate with the database and wait for the results. They also do not
perform any operations that would require a higher CPU usage.

An interesting fact is that different query window sizes did affect the results of Scylla-
cdc-rust positively, in Scylla-cdc-java the differences are barely noticeable. This was probably
related to the bug — with a greater window size, the Rust application sent less requests to
the database.

4.2.3. The second try

Thankfully the problem in the first try was quickly fixed and we were able to rerun the
benchmark. We also managed to solve problems with Scylla-cdc-go — both in the library
and in the driver. One of the bugs was the same bug that was present in the Rust driver on
our first try. The results were better this time as shown in Table 4.2. Figure 4.2 focuses on
elapsed time and shows clearly that our library outperforms competing ones.

Parameter Rust Java Go
Window query size (s) 15 30 60 15 30 60 15 30 60
User time (s) 91.96 94.06 90.95 618.27 594.69 570.11 272.72 236.36 217.81
System time (s) 15.46 13.02 13.88 304.02 273.86 254.97 20.45 16.66 15.90
Percent of CPU got 169% 147% 115% 261% 250% 243% 404% 310% 234%
Elapsed (wall clock) time (m:ss) 1:03.33 1:12.56 1:30.88 5:53.31 5:46.62 5:38.60 1:12.47 1:21.51 1:39.70

Table 4.2: Results of the second benchmark run

21

Figure 4.1: Comparison of CDC libraries performances with respect to different windows sizes

Besides a speed up of the Rust library, we can also see that it used a greater percent of a
single CPU than last time. This is probably because now the latencies were much smaller and
the benchmark application was not idle that often. Results of Scylla-cdc-java are roughly the
same as before. Scylla-cdc-go did run as fast as Scylla-cdc-rust, but its user time was definitely
larger, as well as percentage of used CPU — the benchmark machine had 36 cores, so it still
was not a bottleneck, however the application probably would slow down on a machine with
less cores.

What is interesting is that performance of Scylla-cdc-rust and Scylla-cdc-go have negative
correlation with bigger window size whereas for Scylla-cdc-java it works in a positive way.
This problem might be related to the database — it had to send more rows as a result of
every request.

ScyllaDB was very surprised with weak performance of the Java library, so we decided to
run some more benchmarks — we tried different Java versions (11 and 17) and running the
application on different number of cores to verify that the benchmark was fair. We did not
find any bugs in the benchmark application. Below in Table 4.3 are the results of comparison
of Rust and Java 11 on different number of cores.

Parameter Rust Java
Number of cores 1 2 4 8 1 2 4 8
User time (s) 68.23 79.97 85.52 90.44 361.96 389.91 532.75 713.12
System time (s) 4.37 8.98 11.68 13.41 21.73 50.79 188.92 311.27
Percent of CPU 97% 140% 150% 159% 95% 137% 210% 255%
Elapsed time (m:ss) 1:14.75 1:03.32 1:04.51 1:05.14 6:42.09 5:19.82 5:43.56 6:40.92

Table 4.3: Results of a benchmark for Rust and Java 11 on different number of cores

22

Figure 4.2 contains the dependency of elapsed time on number of cores visualized.

Figure 4.2: Comparison of CDC libraries performances with respect to the number of cores

Unfortunately, these results are not very useful to judge the performance of Scylla-cdc-
rust. This is probably because of how it creates new StreamReaders. The cluster we used to run
this benchmark on contained only 3 nodes with 42 shards in total. Due to that, the library’s
speed did not scale that well with the number of cores. To actually test that, we should have
run the benchmark on a cluster with a lot of nodes, which was beyond our possibilities at the
moment and would require a lot of computing power.

An interesting fact is that Scylla-cdc-java has run faster on two cores, only to slow down
on more cores.

Because of the problems with Scylla-cdc-go, we did not have enough time to run that
many benchmarks for it. Judging on its result in the basic benchmark, it probably would be
slower on one and two cores, but would scale better.

4.2.4. Conclusions

In the benchmark Scylla-cdc-rust performed much better than Scylla-cdc-java and slightly
better than Scylla-cdc-go. However, trying to overpass the results of Rust and Go might be
difficult. The problem lies in the database — it simply cannot process requests faster. During
the benchmark, we saw that the load reached high numbers (over 80%) and the latencies were
a bit larger than usual.

4.3. Summary

This chapter concentrated on our attempts to verify the correctness and performance of the
library. The correctness has been successfully confirmed by different types of tests. The

23

performance was tested only partially — we did not have enough time to invent and run
more benchmarks. However, the result of the benchmark seems satisfactory — it shows that
Scylla-cdc-rust is comparable to Scylla-cdc-go and has a potential to be much faster than
Scylla-cdc-java.

The next and final chapter will be a summary of the whole thesis.

24

Chapter 5

Summary

5.1. Conclusions

5.1.1. Project results

Our main goal was to create a library that facilitates reading the CDC log in Scylla database,
using asynchronous programming in Rust. This task has been completed — we have managed
to create an easy to use library that offers more than both, already existing, libraries in Go
and Java. Our version of the library allows users to read data between any two timestamps,
whereas Java and Go versions have some limits on time bounds. We have also implemented
an option to save the progress while reading the data, which, up to now, was only a feature
in the Go version of the library.

The performance of the library is also satisfactory. A simple benchmark showed that it
might be much faster than Java version of the library, even when tested with a bug that
increased the latencies in the database requests drastically.

One of our side goals was to make modifications in the Scylla Rust Driver. This goal has
also been achieved. We have added support for features regarding the metadata. The driver
also can use the CDC Partitioner now.

Finally, we have managed to create two example applications, the Printer and the Repli-
cator, that show how to use the library. Additionaly, the Replicator has been tested with tests
provided by ScyllaDB, which is an additional confirmation of the correctness of the library.

5.1.2. Future of the library

The library is going to be published under the name scylla-cdc on https://crates.io/, which
is a service that hosts Rust dependencies and allows programmers to convieniently download
them with cargo tool.

One optional step that we did not manage to finish in time was to enable the library to
consume data in a distributed way. However, the library was designed to support this feature
and it can be added later.

5.2. Work division

In the project there were some tasks that have been divided into smaller subtasks and due
to that, every member of our team took part in them — one such example is the Replicator.
Among other tasks that could not have been divided, the work was divided as follows:

25

https://crates.io/

• Adam Boguszewski:

– Module consumer.rs

– Framework for unit tests for the replicator

– End-to-end tests

• Maciej Herdon:

– Module stream_generations.rs

– Module checkpoints.rs

• Marcin Mazurek:

– Logic of the Log reader

– Improvements in the Scylla Rust Driver

• Gor Stepanyan:

– Module stream_reader.rs

– Log reader’s builder interface

26

Bibliography

[1] Austin Appleby, MurmuHash3, 2016. Available at: https://github.com/aappleby/
smhasher/wiki/MurmurHash3 [Accessed 20 April 2022].

[2] Free Software Foundation, Inc., GNU Time, 2018. Available at: https://www.gnu.org/
software/time/ [Accessed 2 June 2022].

[3] ScyllaDB, CDC Overview | Scylla Docs., 2022. Available at: https://docs.scylladb.
com/using-scylla/cdc/cdc-intro/ [Accessed 30 March 2022].

[4] ScyllaDB, GitHub — kbr-/scylla-test, 2020. GitHub. Available at: https://github.com/
kbr-/scylla-test [Accessed 2 June 2022].

[5] ScyllaDB, GitHub — scylladb/scylla-bench, 2020. GitHub. Available at: https://
github.com/scylladb/scylla-bench [Accessed 2 June 2022].

[6] ScyllaDB, GitHub — scylladb/scylla-cdc-go, 2021. Available at: https://github.com/
scylladb/scylla-cdc-go [Accessed 16 March 2022].

[7] ScyllaDB, GitHub — scylladb/java-driver: ScyllaDB Java Driver for ScyllaDB and
Apache Cassandra, based on the DataStax Java Driver, 2022. Available at: https:
//github.com/scylladb/java-driver [Accessed 16 March 2022].

[8] ScyllaDB, GitHub — scylladb/python-driver: ScyllaDB Python Driver, originally DataS-
tax Python Driver for Apache Cassandra, 2022. Available at: https://github.com/
scylladb/python-driver [Accessed 16 March 2022].

[9] ScyllaDB, GitHub — scylladb/scylla: NoSQL data store using the seastar framework,
compatible with Apache Cassandra, 2022. Available at: https://github.com/scylladb/
scylla [Accessed 16 March 2022].

[10] ScyllaDB, GitHub — scylladb/scylla-rust-driver: Async CQL driver for Rust, optimized
for Scylla!, 2022. Available at: https://github.com/scylladb/scylla-rust-driver
[Accessed 16 March 2022].

[11] ScyllaDB, GitHub — scylladb/scylla-cdc-java, 2021 GitHub. Available at: https://
github.com/scylladb/scylla-cdc-java [Accessed 16 March 2022].

[12] ScyllaDB, GitHub — scylladb/gocqlx: All–In–One: CQL query builder, ORM and migra-
tion tool, 2022 GitHub. Available at: https://github.com/scylladb/gocqlx [Accessed
16 March 2022].

[13] ScyllaDB, Welcome to ScyllaDB Documentation | Scylla Docs., 2022. Available at:
https://docs.scylladb.com [Accessed 16 March 2022].

27

https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://www.gnu.org/software/time/
https://www.gnu.org/software/time/
https://docs.scylladb.com/using-scylla/cdc/cdc-intro/
https://docs.scylladb.com/using-scylla/cdc/cdc-intro/
https://github.com/kbr-/scylla-test
https://github.com/kbr-/scylla-test
https://github.com/scylladb/scylla-bench
https://github.com/scylladb/scylla-bench
https://github.com/scylladb/scylla-cdc-go
https://github.com/scylladb/scylla-cdc-go
https://github.com/scylladb/java-driver
https://github.com/scylladb/java-driver
https://github.com/scylladb/python-driver
https://github.com/scylladb/python-driver
https://github.com/scylladb/scylla
https://github.com/scylladb/scylla
https://github.com/scylladb/scylla-rust-driver
https://github.com/scylladb/scylla-cdc-java
https://github.com/scylladb/scylla-cdc-java
https://github.com/scylladb/gocqlx
https://docs.scylladb.com

[14] Stack Overflow, Stack Overflow Developer Survey 2020, 2020. Available at: https://
insights.stackoverflow.com/survey/2020 [Accessed 16 March 2022].

[15] Stack Overflow, Stack Overflow Developer Survey 2021, 2021. Available at: https://
insights.stackoverflow.com/survey/2021 [Accessed 16 March 2022].

[16] Tokio, Tokio — An asynchronous Rust runtime, 2022 GitHub. Available at: https:
//tokio.rs [Accessed 30 March 2022].

28

https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
https://tokio.rs
https://tokio.rs

	Introduction
	Problem overview
	Motivation
	Environment matters
	Rust's growth to power
	CDC Overview
	Task description

	Technical challenges
	Scylla architecture
	Implications for the log table
	CDC partitioner
	Asynchronuous programming

	Summary

	Solution
	Library for CDC
	Architecture overview
	Module consumer.rs
	Module stream_reader.rs
	Module stream_generations.rs
	Module checkpoints.rs
	Module log_reader.rs
	Scylla Rust Driver improvements

	Scylla-cdc-printer
	Scylla-cdc-replicator
	Summary

	Validation
	Tests
	Unit tests
	End-to-end tests
	Replicator integration tests

	Benchmarks
	Method
	The first try
	The second try
	Conclusions

	Summary

	Summary
	Conclusions
	Project results
	Future of the library

	Work division

	Bibliography

