
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Barłomiej Kozaryna
418338

Daniel Filimonow
417855

Andrzej Stalke
418461

Grzegorz Zaleski
418494

WebSocket based application with
CQL TypeScript Driver running on
C++ Seastar server for ScyllaDB

Bachelor’s thesis
in COMPUTER SCIENCE

Supervisor:
mgr Michał Możdzonek

Warsaw, June 2022

Abstract

The purpose of this thesis is to describe the creation of an open-source Scylla database driver
written in TypeScript, a server which would allow better communication between Scylla and
the driver and also an example web application for accessing the database using the afore-
mentioned. All of the components were developed as a part of this thesis.

Keywords

ScyllaDB, Seastar, C++, TypeScript, CQL, Driver, WebSocket, Databases, Terminal, Asyn-
chronicity, Server

Thesis domain (Socrates-Erasmus subject area codes)

11.0 Mathematics, Informatics

Subject classification

Information systems - Data management systems - Middleware for databases - Database web
servers

Tytuł pracy w języku polskim

Aplikacja bazująca na protokole WebSocket z TypeScriptowym sterownikiem uruchomiana
na serwerze C++ Seastar dla ScyllaDB

Contents

Introduction . 5

1. Terminology . 7

2. Used technologies . 9
2.1. Work Environment . 9
2.2. React . 10
2.3. TypeScript . 10
2.4. C++ . 10
2.5. Seastar . 11
2.6. Scylla . 11

3. WebSocket Server . 13
3.1. WebSocket Protocol . 13

3.1.1. WebSocket communication process . 13
3.1.2. WebSocket frame . 14

3.2. Existing alternatives . 15
3.3. Server Model . 15
3.4. Implementation . 15

3.4.1. Server . 16
3.4.2. Connection . 17
3.4.3. WebSocket Parser . 18

3.5. WebSocket Secure . 19
3.6. Integration with Scylla . 19

4. TypeScript CQL Driver . 21
4.1. Existing alternatives . 21
4.2. Design . 21

4.2.1. Frame Creator . 21
4.2.2. Handshake Sender . 22
4.2.3. Query Sender . 22
4.2.4. Paging Handler . 22
4.2.5. Prepare Sender . 22
4.2.6. Execute Sender . 23
4.2.7. Consistency Changer . 23
4.2.8. Type Converter . 23
4.2.9. Authentication Handler . 23
4.2.10. Response Handler . 23
4.2.11. Error Handler . 23

3

4.3. Implementation . 24
4.3.1. Technology . 24
4.3.2. TypeScript . 24
4.3.3. Development . 24
4.3.4. Challenges . 26

5. In-browser Scylla terminal . 27
5.1. Existing alternatives . 27
5.2. Designing project . 27

5.2.1. Composition . 27
5.2.2. Connection & authentication pop-up form 27
5.2.3. Command history . 28
5.2.4. Input section . 28
5.2.5. Response displayer . 28

5.3. Implementation . 28
5.3.1. Technology . 28
5.3.2. Functional React with TypeScript . 28
5.3.3. useState module (State Hook) . 29
5.3.4. useEffect module (Effect Hook) . 29
5.3.5. useMemo module (Memory Hook) . 29
5.3.6. Material UI . 29
5.3.7. Components division . 29
5.3.8. Iterative development . 30
5.3.9. Challenges . 31
5.3.10. Visual appearance . 31

6. Division of work . 37

Bibliography . 39

A. The structure of the source code . 41
A.1. WebSocket Server . 41

A.1.1. Seastar . 41
A.1.2. ScyllaDB . 41

A.2. TypeScript CQL Driver . 42
A.3. In-browser Scylla terminal . 42

4

Introduction

According to the World Economic Forum, at the beginning of 2020, the number of bytes in
the digital universe was 40 times bigger than the number of stars in the observable universe.
Moreover, it is expected that by 2025 human data creation speed will surpass 1018 bytes of
data daily[1]. With that in mind, one comes to realisation how great a part of our lives has
data management become. To process large amount of information, people need fast, scalable
and memory efficient solutions. Without them Discord, for instance, would not be able to
transfer nearly 1 billion messages that users send every day (which is approximately 11 000
messages per second) and Netflix users could not watch their daily dose of 314 days of video[2].

First attempts to somehow store the digital data were navigational databases: Integrated
Data Store and Information Management System, created in the 60’s of the previous century.
Later on, we could observe the raise of relational databases, with creation of the SQL, and
object databases, then NoSQL databases, arriving with today’s, trying to keep up with ex-
ploding demand, distributed or ML-driven databases.

This brings us to the September of 2015, when a small startup, Cloudius Systems (now
ScyllaDB), released an open source database, which was a rewritten implementation of al-
ready existing solutions. Their product became a huge success, significantly outperforming
its archetype[3]. Nowadays, their product is used by such big players as i.a. CERN, Discord,
IBM, Intel or Samsung SDS[4].

Our team was tasked by ScyllaDB with designing and implementing a driver for accessing
aforementioned database. The main goal of the product is to enable a user to connect with
Scylla using a specialised internet protocol, which allows to produce multiple apps which are
going to deliver superior user experience. It requires from us adding content throughout many
layers of the existing system. We have also created a minimalistic web application which en-
ables users to access the database through their internet browsers.

The structure of this paper is as follows: firstly, we will introduce necessary terminol-
ogy, explain certain concepts and introduce used technologies; secondly, we will describe the
components we created and we will discuss our implementation; lastly, a brief insight in our
workflow will be given alongside with some extra remarks.

5

Chapter 1

Terminology

Static typing

A property of programming languages to know types, contrary to the dynamic programming,
at compile time. It enables the compiler to check if all types match each other to minimize
the number of possible errors.

Framework

Framework in programming is a tool that provides ready-made components or solutions that
are customized in order to speed up development. In most cases framework will be external
module or library imported to project’s source-code. In our project we used Material User
Interface framework instead of pure CSS (Cascading Style Sheets) for front-end development.

Driver

The program responsible for intermediation between the client and the server. In our case it
provides an interface to the terminal that enables sending queries to the Scylla database.

Terminal

Terminal is the interface through which user type commands for execution and then (usually)
receives the response in the next line as a stream of characters. In the most cases terminal
is a minimalist, dark-themed window with command prompt line. In our project we took
inspiration from the Linux Terminal to design the terminal of the website from which user can
access and use the database. Moreover, the terminal in our project contains more, advanced
features in comparison to the regular ones from Linux systems.

Default terminal on Fedora Linux

7

Nonce

An arbitrary, most often random or pseudo-random, number that can be used only once
during communication. Used in authentication processes to protect peers from replay attacks
using old connections.

(Communication) Protocol

Set of rules that describe communication between entities. The protocol defines, among
others, the syntax, the semantics and ways of synchronisation. Protocols can be implemented
and layered.

HTTP

A protocol functioning in the application layer of hypermedia transfer systems. It is the
foundation of data transfer in the World Wide Web where hypertext documents are one of
the most common types of data. It was introduced in 1991.

TCP

Transmission Control Protocol is a connection-oriented, working on raw octets, protocol func-
tioning in the transport layer. Its main qualities are reliability, error checking and keeping
the order of the data sent.

SSL/TLS

Secure Sockets Layer and its successor Transport Layer Security are cybersecurity protocols
created to ensure network safety. TLS encrypts the data in a way that in most cases prevents
’man in the middle’ attacks. It typically relies on a trusted third-party certificate authority
to establish the authenticity of the sides.

CQL

Cassandra Query Language is a language for Cassandra database resembling SQL (Structured
Query Language) structure. The syntax is almost the same, it differs by the nature of the
targeted products. A relational database provides features that NoSQL does not and the
other way around. ScyllaDB is a NoSQL database based on Cassandra. Cassandra Query
Language is then the scripting language that is used to communicate with ScyllaDB.

8

Chapter 2

Used technologies

2.1. Work Environment

Fedora Linux

We were all working on Fedora Linux (version 34 or 35). As this operating system is the one
Scylla runs on the best and it was advised from our Scylla supervisor to use this OS. Due to
the fact that we all already had different systems on our computers we employed solutions
such as Docker, Dual-boot or VirtualBox. It is also important to note that the task to obtain
working and stable Fedora OS was far from trivial as each of us needed a different solution
to get a working station (because each of us primarily uses different computer with different
operating system, varying from MacOS to Manjaro Linux).
Another challenge arose from the fact that Scylla consumes a lot of Random Access Memory
(RAM), this forced us to make certain decisions in choosing other tools as that prerequisite
rendered some ideas useless. That heavily affected Grzegorz who needed to move from Vir-
tualBox and then dual-boot system to a separate computer with more RAM available.
Fortunately in the end we all were equipped with the working Fedora system and Scylla server.

Visual Studio Code

As our coding workspace we all chose to use Visual Studio Code with selected plugins. The
reason for choosing this text editor was simple. Each one of us could:

• Select plugins to make the environment as comfortable as possible.

• Work with different programming languages, switching between C++ and TypeScript
was smooth.

• Run programs without the necessity of extra computational power

These (and much more) advantages make VSC the most popular tool for developers all over
the world.

WireShark

For testing reasons, we were also using Wireshark which is a very convenient and easy-to-use
tool. It captures data packages sent over the network and enables their decoding. It enabled
us to track queries and responses between the driver and Scylla.

9

Internet Browsers

We used Chrome and Firefox - the two most popular browsers - to work with data packages
sent and received by server, driver and terminal. The same tool was used to dynamically
see the terminal from the perspective of a regular user and to conduct real-life tests on the
terminal.

Github

We used github.com for storing and keeping back-up copy of our work, tracking changes in any
set of files of our projects, coordinating work amidst team members collaboratively developing
different features.

2.2. React

One of the three most popular open-source frontend frameworks. We chose React as a tool
for terminal development because we consider it the cleanest among other frameworks and
we have a lot of experience with it.

2.3. TypeScript

Multiparadigm programming language created by Microsoft that extends functionalities of
JavaScript. It compiles to the previously mentioned language. Furthermore, a program
written in JavaScript is also a valid TypeScript program and all JavaScript libraries are
compatible with TypeScript code. Moreover, it allows for static typing, therefore providing
much more safety to the language which is known as one of the most unsafe languages. Its
popularity is growing year to year because of multiple reasons, code written in TypeScript
is safer and clearer than the JavaScript one. Moreover, software engineers outside of the
project are more likely to understand, debug and add new features to it. Safety, clarity, and
compatibility with terminal and various multiple libraries was the reason to choose TypeScript
over any other language in implementation of our cql driver, working with binary data is much
more convenient when having an extra layer of security and access to one of the biggest open-
source code bases. This decision was consulted with and approved by the Principal Software
Engineer from ScyllaDB.

2.4. C++

General-purpose programming language offering functional, generic and object-oriented fea-
tures in addition to tools allowing for low-level memory manipulation. It is mostly used as
a compiled language (in case of our project also). C++ is appreciated mainly for its high
performance given the amount of facilities for the programmer.

C++20

Latest, stable version of C++ programming language, standardised by The International
Organization for Standardization, published in December 2020. It introduces i.a. coroutines,
pack-expansions in lambda init-captures, constraints and concepts[6].

10

2.5. Seastar

High performance, event-driven, open source C++ framework, designed for creating non-
blocking and asynchronous server applications[15]. Used techniques are, to name a few:
threads, shared memory, mapped files.

2.6. Scylla

Scylla is an open source NoSQL database[5]. It is implemented as a distributed wide-
column database, compatible with Apache Cassandra, however achieving significantly higher
throughputs[3]. This database is written using mainly C++20 and the Seastar framework.
Not only does it implement Cassandra’s protocols, but also the Amazon DynamoDB API.
Scylla uses horizontal partitions of data, called shards, on each node, which makes each CPU
core manage different subset of data.

11

Chapter 3

WebSocket Server

3.1. WebSocket Protocol

Although ubiquitous, hyper text transfer protocol (HTTP) is not always the best choice
for client-server communication, for its request-response methods and redundant headers.
With help then comes a full duplex alternative - the WebSocket Protocol, which offers lower
overheads than the HTTP. WebSocket operates on a single TCP connection and can work on
the same ports as HTTP (80 and 443). To achieve compatibility, a HTTP upgrade header
is send as a WebSocket Handshake. Afterwards a two-way message framing communication
follows. This protocol offers also its encrypted version called WebSocket Secure.
The WebSocket protocol is standardised by the IETF as RFC 6455[7].

3.1.1. WebSocket communication process

The protocol can be divided into two parts: handshake and data transfer. The first one
is straightforward: client sends a HTTP upgrade frame containing the following untypical
headers:

• Host - the hostname to enable reaching an agreement with the server

• Sec-WebSocket-Key - nonce

• Origin - protection against unauthorized cross-origin use of the server

• Sec-WebSocket-Protocol - which subprotocols the client accepts

• Sec-WebSocket-Version

Then the server, if it is willing to communicate, responds with the last HTTP frame in
successful communication containing the following untypical headers:

• Sec-WebSocket-Protocol - server has to choose one of the subprotocols suggested by the
client or fail

• Sec-WebSocket-Accept - client nonce transformed accordingly

and status line:

HTTP/1.1 101 Switching Protocols

13

After a successful handshake the second part begins, which means that frames can be ex-
changed in full-duplex between the client and the server. The communication ends if one of
the sides sends a CLOSE frame (in practice also when the TCP connection timeouts).
It has to be noted that our implementation requires the client to always choose exactly one
subprotocol offered by the server.

3.1.2. WebSocket frame

Aforementioned frames have the following format (taken from the RFC 6455 documentation)[7]:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-------+-+-------------+-------------------------------+
F	R	R	R	opcode	M	Payload len	Extended payload length
I	S	S	S	(4)	A	(7)	(16/64)
N	V	V	V		S		(if payload len==126/127)
	1	2	3		K		
+-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +							
Extended payload length continued, if payload len == 127							
+ - - - - - - - - - - - - - - - +-------------------------------+
| |Masking-key, if MASK set to 1 |
+-------------------------------+-------------------------------+
| Masking-key (continued) | Payload Data |
+-------------------------------- - - - - - - - - - - - - - - - +
: Payload Data continued ... :
+ - +
| Payload Data continued ... |
+---+

Unapparent keywords:

• FIN - indicates whether the frame is a final fragment of a message

• RSV? - extension flags, which are ignored in our server

• opcode - code indicating the type of the frame

• Masking-key - all data sent from the client to the server is masked using this key

Types of frames important for our server:

• 0x1 - UTF-8 text data

• 0x2 - Binary data

• 0x8 - Close frame

The length of a frame depends on the length of payload data. In theory it is possible to send
frames up to 263 − 1 bytes in length.

14

3.2. Existing alternatives

Implementation was preceded by a research from which we tried to learn about already ex-
isting, publicly available libraries for communication over WebSocket in different languages,
but especially C++.
Among many, Rust (tungstenite)[8], Python (WebSockets)[9], C++ (boost/beast [10],
websocket++[11]), C (libwebsockets)[12] have community created solutions which are quite
popular. There are also languages like SWI-Prolog[13] or Haskell[14] which offer access to
official packages.
Even though we used the python’s WebSockets library in the debugging process, the afore-
mentioned libraries would be difficult to integrate with Scylla, would unnecessarily increase
latency or do not offer features as coroutines. Hence, a decision was made to implement it
using the Seastar framework which is already used by Scylla, is reasonably fast and offers all
necessary features, i.a. those available in C++20.

3.3. Server Model

Simplified server model

When the server is instantiated it has to have at least one handler registered to know how
to perform data transfer part of communication with clients. A handler is a function which
accepts input and output streams and returns a seastar::future<>. It is recommended for it
to hand over the control to the Seastar backend while waiting for data from the input stream.
The server keeps handlers inside an ordered map subprotocol → handler. Afterwards the
server has to be told to listen on a specific socket.
When a client and the server perform a successful handshake an instance of Connection class
is created, has its subprotocol assigned, and from this moment, asynchronously, manages the
data exchange with clients applications through WebSockets.

3.4. Implementation

In this section we will explain the API and structure of classes located in the seastar source
files on the path: include/seastar/websocket/server.hh. Cases of trivial fields or methods will
not be discussed.
Our server implements a subset of the WebSocket protocol sufficient enough to meet Scylla’s
needs. Nonetheless the software and protocols are ’alive’, therefore adequate updates might

15

be required in the future. Moreover it could be reconsidered to implement an algorithm to
pick a subprotocol from a set suggested by the client or start supporting additional frame
flags

3.4.1. Server

The class is declared at the beginning of the file to make it visible to other classes which are
cyclically dependent.

Public Methods

* void listen(socket_address addr)
* void listen(socket_address addr, listen_options lo)

Both methods can be used to supply the server with sockets on which it can listen on and
the second one specifically allows the user to specify options, which are in the first case a
singleton flag - ’reuse_address’. Server can listen on multiple sockets. It stores them in a
protected vector ’_listeners’. Further management is delegated to the ‘do_accepts‘ method.

* future<> stop()

This method is used to stop the server. It sets the protected field ’_stopped’, frees allocated
sockets, closes all connections and returns seastar::future<> so other actions can be performed
by the backend while connections are being closed. The mentioned flag is important for
stopping the ’do_accepts’ process.

* void register_handler(std::string&& name, handler_t handler)
* bool is_handler_registered(std::string const& name)

The first method takes a name of the handler (and therefore also a subprotocol) as an rvalue
std::string and a handler, which is a function taking references to ’input_stream<char>’ and
’output_stream<char>’ and returning a seastar::future<>.
The second one checks whether a handler/subprotocol with given name has already been
registered. Handlers are stored inside a private map ’_handlers’ so both actions are performed
in O(n log n) where n is the number of registered handlers.

Protected Fields

* void do_accepts(int which)
* future<> do_accept_one(int which)

The main asynchronous loop using seastar is built in method ’do_until’. The future returned
by it, is saved to a private field ’_accept_fut’ so it can be waited on in the stop method.
Calling the first method setups the loop which works until ’_stopped’ flag is set and performs
single accepts on the which’s socket in ’_listeners’ asynchronously creating new instances of
Connection class which are ’befriended’ to our server.

Private Fields

* boost::intrusive::list<connection> _connections

List which new connections will sign into. This implementation of lists is chosen because of
thread safety and to suffer less from cache thrashing,

16

3.4.2. Connection

* boost::intrusive::list_base_hook<>

The Connection class must inherit from ’boost::intrusive::list_base_hook’ in order to work
with ’boost::intrusive::list’.

* connection_source_impl
* connection_sink_impl

Seastar’s input and output streams internally use special classes ’data_source’[17] and ’data_sink’[16].
They require classes ’connection_source_impl’ and ’connection_sink_impl’ to be imple-
mented in order to work with our server.

Public Methods

* future<> process()

This method is called after accepting a new connection. It calls ’read_loop()’ and ’re-
sponse_loop()’ and wait for their completion.

* void shutdown()

The ’shutdown()’ method shuts down the TCP connection with the client.

* future<> close()

This method is used to gracefully close the connection. It sends a CLOSE frame and closes
the connection.

Private Methods

* future<> close(bool send_close)

This method is used to close the connection. If ’send_close’ is set to true, then it sends
CLOSE frame before closing the connection.

* future<> handle_ping()
* future<> handle_pong()

PING and PONG frames are used to check if the other side of the connection is responsive.
These methods are responsible for handling them.

Protected Methods

* future<> read_loop()

This method is responsible for starting the WebSocket connection by calling the
’read_http_upgrade_request()’ method, starting the handler and calling ’read_one()’ in a
loop.

17

* future<> read_one()

This method is used to read data from the client and send it to the WebSocket parser. The
received messages are sent to the stream to which the handler is connected.

* future<> read_http_upgrade_request()

Before the WebSocket connection can be established, the HTTP upgrade request must be
processed. This method is responsible for that and for sending a reply.

* future<> response_loop()

This method is responsible for sending data from the ’_output_buffer’ queue to the client.

* void on_new_connection()

The server must know that a new connection has been established. This method is used to
add the connection to the server’s connection array.

* future<> send_data(opcodes opcode, temporary_buffer<char>&& buff)

The WebSocket protocol requires data to be wrapped in a frame. This method is used to
wrap data stored in the buff argument in a frame type specified by the opcode argument. The
created frame is immediately sent to the client.

3.4.3. WebSocket Parser

This class is made as an object oriented solution to parse incoming frames and store all the
necessary data for future non-blocking parsing.

Public Methods

* future<consumption_result_t> operator()(temporary_buffer<char> data)

Since TCP packets are delivered as a stream of octets, the ’read’ method may not be able
to read the entire WebSocket frame at once. To deal with this problem, seastar’s input
stream[18] offers ’consume’ method that requires operator()(temporary_buffer<char> data)
to be implemented. It is called to process a new data packet from the client and return
whether the WebSocket frame has been processed completely.

* bool is_valid()

This method returns true, if the parser is still in a valid state and more data can be parsed.

* opcodes opcode()

This method returns the type of the frame parsed by the parser.

Private Methods

* void remove_mask(buff_t& p, size_t n)

Data in client’s WebSocket frame must be masked. This method removes the mask from the
data.

18

Private Fields

* parsing_state _state

This field describes the current stage of parsing a frame. There are three states:

• Processing flags and payload data

• Payload length and mask

• Payload

* connection_state _cstate

It holds whether the parser is in valid state. There are three states:

• Valid - the parser can accept more data

• Eof - the connection is closed

• Error - an error has occurred, parser is now invalid

* sstring _buffer

This field holds the unprocessed data.

* std::unique_ptr<frame_header> _header

This field holds the WebSocket header of the processed frame.

* buff_t _result

This field holds the payload received in the WebSocket frame.

3.5. WebSocket Secure

In the same way that HTTPS (Hypertext Transfer Protocol Secure) uses SSL/TLS to fix up
HTTP vulnerabilities to capturing and changing sent data, WSS (WebSocket Secure) offers an
encrypted version of WS. As a bonus part of the project, we added a simple and minimalistic
implementation of WSS to our Seastar contribution. It was attained by clever inheritance
and usage of solutions already built in the framework.
A secure version of the server has nearly the same interface. The only difference is that during
the instatiation it has to create a shared pointer for a certificate, and the listening method
has to be given paths to files with a certificate and a corresponding key.
Testing the WSS version of the server was problematic because creating certificates and keys
leads to errors about self-signed certificates, which cannot be turned off in certain libraries.

3.6. Integration with Scylla

Integration of the the WebSocket server with ScyllaDB was done by creating a new class
’websocket::controller’ that inherits from the class ’protocol_server’ and creating an instance
of this object in the main function of ScyllaDB. The created object must also be registered
as a protocol server. To make it more configurable, the server address and port were added
to the configuration file.

19

Implementation of websocket::controller class

The source code of this class is located in the ScyllaDB source code in the ’websocket’ sub-
directory. The only important method is future<> controller::start_server(). It starts the
WebSocket server, registers the CQL subprotocol handler and starts listening on configured
address and port. The handler is very simple, it works as a bridge between the client and
built-in CQL server.

20

Chapter 4

TypeScript CQL Driver

The second and the biggest part of the whole project was a CQL driver that communicated
with database using WebSocket protocol. It was implemented using the fourth version of
CQL Binary Protocol as it is the newest version that the Scylla database handles. This driver
offers a set of functionalities. After providing a human-readable message to certain command
it translates the whole message to a list of bytes that are easily understood by the database.
Moreover, it decodes all responses from the database to let user know its meaning.

4.1. Existing alternatives

After doing some research we found out that there exists CQL driver for web applications.
However it did not use WebSockets and was written for other database also based on Apache
Cassandra. Therefore we realized that writing CQL driver over WebSockets on a Scylla
database is a great opportunity to create something non-existing and contribute to open
source community.

4.2. Design

After familiarising with protocol specification the driver was planned to be made of couple
semi-independent modules listed as Frame Creator, Query Sender, Paging Handler, Handshake
Sender, Execute Sender, Prepare Sender, Consistency Changer, Type Converter, Authentica-
tion Handler, Response Handler and Error Handler.

4.2.1. Frame Creator

Most basic yet most important module is Frame creator. Its whole purpose is to create empty
frame from scratch. It consists of 6 components:

• Version - Version of the protocol.

• Flags - Number providing extra information about the frame.

• Stream - Number of the message, it is needed to permit asynchronous usage.

• Opcode - Number indicating type of message.

• Length - Body length.

• Body - Message content.

21

Preview of the frame (numbers indicate number of bits each part has):

0 8 16 24 32 40
+---------+---------+---------+---------+---------+
| version | flags | stream | opcode |
+---------+---------+---------+---------+---------+
| length |
+---------+---------+---------+---------+
| |
. ... body
. .
. .
+--

4.2.2. Handshake Sender

This module creates and sends handshake message. It starts whole conversation with the
database. Without sending it, database would respond with errors indicating that this mes-
sage was not sent and ask for delivering a handshake.

4.2.3. Query Sender

Query Sender is a very important module, without it the CQL Driver could not access any
data from the database. It would make whole driver utterly useless. Query Sender takes an
input from the user and at the beginning, creates empty frame and then proceeds to translate
received message to binary data that is understandable by Scylla.

4.2.4. Paging Handler

Paging Handler allows to divide response from the database to multiple pages, each having
arbitrary, maximal number of rows. It has wide amount of available operations. At the
beginning it provides previously mentioned paging mode. User can turn it on and provide
desired number of rows that will come with each page. Of course this mode can be turned off
in a single API call. When the paging is on, every query request will result in a single page
from the database. Driver provides the current page number to the user to indicate him on
which page he currently is. Moreover it shows whether previous or next page exist. If so user
can ask for adjacent page. Then the request will be send to the Scylla database and if there
are no internal errors on the database side, the new page will be delivered to user. It is worth
to mention that ids of previous pages are stored to provide quick lookup to pages that were
previously delivered, without it, asking for previous pages would be impossible as the CQL
protocol does not allow for previous page request as.

4.2.5. Prepare Sender

This module is very similar to the Query Sender. It allows user to prepare certain query.
Preparing is about sending query message but without executing it. It also allows for incom-
plete query format (User can indicate that certain fields will be delivered while executing).
Main purpose of preparing queries is to greatly improve efficiency of multiple request that
are very similar to each other. It saves a lot of time and resources that are required to parse
whole request over and over again. The driver gets message needed to be prepared, converts

22

it to binary format and sends it. In response database should deliver id of prepared queried
that is necessary to execute it.

4.2.6. Execute Sender

Execution Sender is quite a simple module. It executed the query prepared before. As the
arguments, this sender takes the id of the prepared query and the list of arguments that will be
placed in the blanked places of the prepared query and sends proper message to the database
indicating that the user wants to execute the query. Paging also covers execute messages.
After receiving a response it is possible to move through all available pages resulting from the
query prepared before.

4.2.7. Consistency Changer

Consistency Changer provides possibility of changing consistency level. This variable indicates
requirements for success of certain operation. After providing a consistency level to the driver,
it will be used in future requests. At the beginning it is set to ’All’.

4.2.8. Type Converter

Type converter is a very important module. It allows for two sided conversion between human
readable input and binary form. This module is used in almost every other one as conversions
are required on almost every stop. There are over 20 distinct CQL types that require proper
handling. Without possibility to convert a message to CQL form executing queries would
be impossible and without other side conversion presenting results of queries would be non-
readable.

4.2.9. Authentication Handler

Authentication Handler sends credentials to the Scylla when it requires authentication. Pass-
word requirement can be set in Scylla configuration file. Driver enables option to properly
authenticate, it accepts login and password and sends it directly to the database.

4.2.10. Response Handler

This module handles all responses received from the database. User should provide setter of
variable that will hold results coming from database. It is required as the driver listens to
the WebSocket with Scylla and directly modifies the result instead of letting user wait for the
response. It is useful as sometimes driver will respond instantly in case of an error.

4.2.11. Error Handler

When CQL frame has the ’ERROR’ opcode, Error Handler comes handy. It translates error
message written in binary form to readable format while adding extra information that is not
explicitly encoded. Moreover handler provides data to the user that an error occurred. It is
very useful as the message can be shown in red. This should be clear sign to the user that
something went wrong.

23

4.3. Implementation

4.3.1. Technology

Whole driver was written entirely in TypeScript, there were no necessity for any other lan-
guage. It allows for an easy access from the website. But driver does not need to be run in
the browser. It might as well be build without it. This way we could use plenty of modules
that made whole development process easier as well as test our product without a browser.

4.3.2. TypeScript

Use of TypeScript as previously mentioned allowed us to use a lot of different modules. The
most important one is a WebSocket module. There was no need to write distinct WebSocket
driver for web development when the solution already existed. Moreover it became a great
ground truth as it could be assumed that it is correct when testing WebSocket handler.
Without it there was a chance that in both WebSocket drivers some malfunction would exist.
Other modules mostly regarded conversion and formatting issues. TypeScript is quite limited
in terms of type abundance. It was necessary to provide data structure that could easily
handle multiple operations on binary data as the driver required so. Furthermore introduction
of big int made everything easier as big int in opposite of default number type was able to
represent eight byte variables. Moreover using TypeScript allowed us to write cleaner code as
everything has to be typed. It greatly reduced amount of runtime errors as almost everything
was previously checked during type checking.

4.3.3. Development

Whole process followed very iterative trait.

• Proxy Server - At the beginning proxy server in python was implemented. It was
needed to communicate with Scylla as the database previously provided only direct
communication via TCP. Proxy server had a very straightforward design. It connected
to database and waited for WebSocket clients to join and send communicates that would
be forwarded directly to Scylla. After proxy server was created it was possible to actually
send something to Scylla.

• Auxiliary Functions - Afterwards all extra functions were implemented which have
been used later in all other modules. Mainly they were focused about creating and
decoding binary objects to facilitate handling of frame objects. Also consistency level
handling was implemented at this point.

• Creating frames - In the next step simple frame factory was created. Its main purpose
was to test communication with database as well as providing a base for more advanced
creating modules. Ensuring that Scylla was getting correct frames was critical to any
further development.

24

• Handshake - After sending correct frames all returning messages consisted of an error
message wrapped in CQL frame showing that CQL connection has not been initialized
with handshake. To move forward it was necessary to create handshake frames. After
their implementation it was possible to proceed further and focus on actual request from
database.

• Query - Implementation of sending queries was not complicated. All that was needed
was to wrap query body inserted by user into CQL frame with addition of some param-
eters. User was able to create keyspaces, tables, insert data into them as well as asking
for content. However received data was non readable.

• Showing results - Therefore it was needed to decode all received information. This
however was very time consuming, there were multiple types of results. Each one of them
needed to be handled. After successful implementation of protocol concerning results
and type conversion it was possible to get human readable format of all communicates
coming from the database as well as tables coming as a result of ’Select’ queries. At
this point it was possible to communicate with Scylla and actually work on it. However
there were yet some features to be implemented.

• Paging - First of those features was paging. It allowed to ask for certain page sizes
and traverse whole table smoothly. Extra data was attached to each query to provide
database information about user expectations. Also location of next pages started to
be retrieved from database results. This turned into a fine module which functionalities
exceeded those coming from other CQL drivers.

• Prepare & Execute - Another great functionality was to provide possibility to prepare
and execute queries. Prepare was very simple to implement as the body of prepare
message was almost the same as the query one. However execute was a bit harded.
Mostly it needed conversion between input provided by user to binary representation
which was not trivial in some cases. Therefore type conversion module was greatly
enhanced to enabled this feature.

• Authentication - Last but not least was giving possibility to log into databases that
required login and password. If specified in Scylla configuration file, proper authentica-
tion is required. If our driver would not allow to access such databases it would be as
good as useless. Authentication is possible in our driver in two scenarios. First of them
is trying to authenticate alongside handshake. Therefore if credentials are not required
they will not be sent. However if information about their necessity comes they will
instantly be delivered to database. Second one is to just send authentication message
in any moment. If user already has been authorized, Scylla will respond with error
message. Otherwise an attempt to authenticate will be made. Any non successful try
will be responded with specific error communicate.

25

4.3.4. Challenges

Implementation of the CQL driver brought a lot of challenges:

• WebSockets - One of them was the issue with WebSockets. Each browsers provide
WebSockets to some extend but their implementations, functionalities and behaviours
differ. However without any browser it is impossible to use WebSockets. Fortunately
there is WebSocket library that enabled driver to work even without browser. But an
issue arose, including WebSocket library conflicted with native WebSockets built in to
browser. After hours of research a solution has been found and implemented. CQL
driver started to recognize if environment belonged to the browser or not.

• Types - Another challenge was in managing all required data types. A lot of time
was spent to find all details regarding TypeScript types and their limitations as well as
build in classes. Afterwards research was made to include all libraries that could help
in proper conversions. Unfortunately a lot of libraries were very limited. It resulted in
huge amount of work during implementation of type conversions.

• Debugging - Although the biggest challenge was in finding bugs. Sometimes the frame
was incorrect and response from the database was not precise enough to understand it.
Debugging code that runs in the web browsers is very hard due to nature of environment.
There are no breakpoints to easily access variables in a specific moment and check their
value. Of course there is an brute-force option to write certain information to the web
console and compare expected results to actual ones. However it results in a huge
amount of non organized data and finding error becomes tedious with this approach.
A better option is to track actual data frames with Wireshark at the beginning of
debugging process. With proper filtering a lot of information could be found and the
most important, there was a view of the exact data that Scylla received. Sometimes bugs
were very visible when looking at binary frame in Wireshark and entirely not existent
on the driver side. Thanks to this tool debugging challenge was not as distressing as it
could be.

26

Chapter 5

In-browser Scylla terminal

The third, the most front-end part of the project was a browser terminal for the entire project.
Here user connects to the Scylla database, sends commands, modifies or requests data and
receives it on the conveniently and user-friendly designed response displayer.
We based our project on the terminal from Linux systems. As the main traits of this project,
we chose minimalism, user-friendliness, easiness of operations. Dark-mode was chosen rather
than light-mode for the colour theme for the projects as it generally regarded than less tiring
for eyes and preferred by users. Dark theme is also the default and most commonly used
colour scheme of virtually any IDE and terminal.

5.1. Existing alternatives

We did some research on similar projects, terminal templates or ideas and existing node
packages, however the best we found was this one react-terminal npm package[20].
Firstly we decided to incorporate it to our project, however it quickly proved to be difficult
to modify and with very limited possibles for developing new features. Therefore we decided
to write our terminal in React with TypeScript and Material UI from scratch.
Another advantage of such way is that we - the developers - can better understand it as it is
easier to modify each underlying subpart of the project.

5.2. Designing project

5.2.1. Composition

The browser terminal is divided into three main parts - command history, input section,
server’s response displayer - and a pop-up form which at the beginning asks the user to
provide information for authorisation and/or connection.

5.2.2. Connection & authentication pop-up form

This part is launched at the beginning, and while this form is displayed the rest of the page
is overshadowed and disabled. There user can insert address and port for server with Scylla
database to which they intend to connect to, username and password for authorisation. Then
query is sent to the server to check if given credentials are correct. In the meanwhile loading
icon is displayed instead of the form. Upon successful verification application is connected to
the database and the user can access the main part, otherwise respective error is displayed
and user is asked to re-enter credentials.

27

5.2.3. Command history

The top part of the application. Shows ten of the lastly used commands. User can quickly
re-enter commands from the history to the input part using up and down arrows. History can
be cleaned by typing Clear (not case sensitive).

5.2.4. Input section

This is the place where user can write CQL commands which will be subsequently send to
the server and executed there.
Input allows user to switch between two types of formatting short (default, can be set by
typing short in the input) - commands will be send after pressing enter, and long (is set by
typing long in the input) commands must end with semicolon, otherwise pressing enter will
append endline, allows user to insert multi-line commands.
Instead of typing command user can also copy-paste it from external source or access history
of commands with up and down arrow keys, then press enter to re-enter chosen command.
Another feature controlled from this part is paging control, PAGING ON n will set database
to divide large responses into chunks (called pages) of n rows, respectively PAGING OFF
(default one) will turn off and make portions of data obtained from database to show up no
matter how large they are.

5.2.5. Response displayer

Displays the latest response from the server. Executing another CQL code will result in
receiving new response which will be shown instead of the previous one. Displays works with
two type of responses: single line responses and table response. For table response (if paging
is enabled) application provides user with buttons for moving between pages (set of rows from
larger response) on the bottom.
Displayer automatically detects if the response is an error and shows it in red colour and
bolder font.

5.3. Implementation

5.3.1. Technology

Entire terminal is made in React with TypeScript, for CSS feature we used Material UI
framework. All connection to the server/database is done through the already mention driver
module.

5.3.2. Functional React with TypeScript

Employing React was the obvious choice as it is widely considered the most popular technology
for such matter so there is a plethora of resources, manuals, libraries and frameworks available
online.
We chose functional React - not the objective one - as it is more modern, works better
with external libraries (especially Hooks proved to be a great tool), and all of us prefer the
functional paradigm rather than the objective one.
The last important choice made here was to use TypeScript or the regular JavaScript, we went
with the first option as it gives a better handle on controlling dataflow, it is more readable

28

and (as we give the project to the Scylla’s software family) will be easier use in the further
development.

5.3.3. useState module (State Hook)

The most important hook in the terminal, it dynamically stores data received from the user
and driver. It work perfectly smooth with the React components, as it automatically update
the displayed information on the front website. Apart from storing every variable used in the
terminal it is used to connect raw HTML with Material UI CSS classes resulting in pleasant
for eyes’ of user website structure.
Another alternative would be Redux, however it was decided that State Hook is a much more
elegant, readable and comfortable to use solution.

5.3.4. useEffect module (Effect Hook)

This hook is used to dynamically check and update components after new response from the
server arrives or user inserts new command into terminal. We chose it as it makes instant
updates on elements after given condition occurs and does not require constant refreshing to
check the condition.

5.3.5. useMemo module (Memory Hook)

This hook is used only once - to hold once initialised driver object - however it is of a vital
role as it prevents React to re-render and therefore costly re-initialise (and probably lose some
data in the process) the driver each time something in the application is done.

5.3.6. Material UI

We chose this framework as it is simple and easy to use and works smoothly with State
Hook and React. Framework detailed description and documentation is available at their
website[21].

5.3.7. Components division

Terminal is build from the hierarchy of React component with the main functions and con-
nection to the driver being defined in the Terminal component and then passed down to other
elements:

• Launch Form Component
Component is displayed only when connections to the database has not been initialised
yet or it requires further authorisation. When this element is on all other functionalities
of the terminal are disabled.
This components inherits functions to commence connection to the database server,
holders and modifiers for username, password, address and port. Launch Form on its
own consists of just two elements displayed interchangeably - loading animation from
react-loading-icons module (more information at module’s page[22]) while application
awaits response for the query and form when user is asked for the credentials.
After submitting form the component does some basic check-up if they are not null, and
in such cases does not move forward with the query, instead displays message to the
user to fix their input.

29

• Terminal History Component
This simple elements inherits access to just the list of last used commands from the
main component. It then creates a table from ten most recent ones to display on the
top of the screen. Thanks to Effect Hook it does everything smoothly, dynamically and
automatically after any new command is entered to the terminal.

• Input Component
This components inherits command modifying function, its value and currently set
keyspace name. Input components then divides further into a keyspace displayer on
top - information in which user currently is, this information dynamically changes upon
executing command to move to another keyspace. Second part is the textarea - probably
the most important piece of the whole front-end application. Here user insert commands
for further executing at the terminal (like clearing history or switching between input
format), or in the most - to be sent to the driver and then server.
There is no need for passing input format indicator to here as parsing and analysing
input is done in the main component.

• Server Response Component
This component consist only (bar the banner saying Response and auxiliary formatter
for showing error) of two different structures to display both types of responses from
the driver. First would be for simple one-liner response (which can also be the error
message), the other - Table Displayer structure - is more complex as it displays
tabled response, considering the tools for the paging feature (next/previous page, current
page counter, moving response to the next chunk etc.).

• Logo Component
This element is just a simple watermark of ScyllaDB logo, it is permanently displayed in
the bottom right corner with 20% opacity as not to cover anything on the application.

5.3.8. Iterative development

Build the terminal was lengthy and challenging process, therefore we employed iterative de-
velopment. Firstly - without even connecting terminal to the database - we built a first
semi-working front-end application, which consisted of a simple terminal with poorly working
input (without format options and history editing), commands history and response part that

30

just printed out whatever it received. However, what really matters, it worked, it fulfilled its
basic, most primitive goal, we tested it and then connected to the driver and database (via
temporal, auxiliary proxy server). After that we just kept repeating the pattern of adding
new features (such as table displayer, paging, functionality of keyspace, launch form etc.),
testing them, presenting them to our supervisor from Scylla on our weekly and then repeat-
ing this work pattern. The last feature to add (not counting testing everything thoroughly)
was implementing the authentication feature to the launch panel, which conveniently take
care of handling multiple failed attempt of connecting to the database.

5.3.9. Challenges

The first, probably the greatest, challenge was the integration of the parts we did separately.
Each found bug or working incorrectly feature needed to be widely analysed to find the place
of origin (which part of the application malfunctioned) and then find the best approach to
fix the project. This was usually solved together quite swiftly and smoothly as we had an
excellent teamwork and great communication between members.
Second challenge, I think would be organising work. Project was quite large, lasted almost
a year, and in the meantime all of us had a university duties to attend. However, thanks
to the good planning, sticking to the plan, iterative development, regular meetings when
we discussed current progress and issues, we moved forward every week and finally finished
everything we had to do.
Last challenge would be frontend design as it requires not only raw, analytical planning but
it also needs to be looking attractive and pleasant to average user who may have virtually
none programming knowledge. This required a series of consultation, changes in website’s
appearance and manual testing to check whether all elements fit properly, and are displayed
neatly and visibly.
In the end we can say, that we coped with every issue we faced and created a satisfying result.

5.3.10. Visual appearance

Developing the visual appearance of the application was a complex problem, because it con-
sisted not only of designing something that works properly, but also is pleasant for eyes of
regular user - something that cannot be measured objectively. Of course we made sure that
things that are objectively negative - such as overlapping elements, unreadable font colour,
flickering screen, disappearing text are not happening in any case. We kept all main elements
in the same, dark-themed colour palette, with navy background and lightcyan font.

31

Launch from

Reathorisation form

Single-line response

32

Displaying errors from response

Tables response

Scylla DB logo (transparent enough so the background is easily readable)

33

Command history

Input componenent (with cycling keyspace set)

34

View of the entire application

35

Chapter 6

Division of work

Before starting the project we had divided it between the team members so that everyone could
specialise in one area, however there was constant communication amongst us, both during
designing and implementation processes to fill in the knowledge gaps and experience gaps
and make the final integration seamless. The Final Bachelor’s paper was written together,
everyone at first described the topics they were working on in order to provide the best quality
of report and then a group review was performed.

Andrzej Stalke

Alongside Bartłomiej, Andrzej designed and implemented the WebSocket server described in
this paper. He also took care of the whole integration process which enabled ScyllaDB to use
the aforementioned server.

Bartłomiej Kozaryna

Together with Andrzej, Bartłomiej was responsible for the server implementation. He partic-
ipated in the general structure and the first parser implementation and afterwards was more
focused on developing tests using seastar and the TLS server version. Moreover he undertook
the code review for driver and terminal and added a few minor stylistic touch ups to the
front-end.

Daniel Filimonow

Daniel designed and implemented the CQL driver in TypeScript based on the protocol
specification[19].

Grzegorz Zaleski

Grzegorz was the main creator of the terminal part of the application. Due to the nature
of how driver and terminal work together many part of the terminal were consulted and
implemented with Daniel.

37

Bibliography

[1] Jeff Desjardins: How much data is generated each day? [online] https://www.weforum.
org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/
[Access: 01.06.2022]

[2] Statista Research Department: Media usage in an internet minute as
of August 2021 [online] https://www.statista.com/statistics/195140/
new-user-generated-content-uploaded-by-users-per-minute/#:~:text=Media%
20usage%20in%20an%20online%20minute%202020&text=A%20lot%20of%20things%
20happen,are%20streamed%20by%20users%20worldwide [Access: 01.06.2022]

[3] ScyllaDB Benchmarks [online] https://www.scylladb.com/product/benchmarks/
[Access: 01.06.2022]

[4] ScyllaDB Clients [online] https://www.scylladb.com/users/ [Access: 01.06.2022]

[5] ScyllaDB Technology [online] https://www.scylladb.com/product/technology/
[Access: 01.06.2022]

[6] C++20 Information [online] https://en.cppreference.com/w/cpp/20
[Access: 01.06.2022]

[7] RFC 6455 [online] https://datatracker.ietf.org/doc/html/rfc6455
[Access: 01.06.2022]

[8] Rust WebSocket Library [online] https://crates.io/crates/tungstenite
[Access: 01.06.2022]

[9] Python WebSocket Library [online] https://websockets.readthedocs.io/en/stable/
[Access: 01.06.2022]

[10] C++ Boost WebSocket Library [online] https://www.boost.org/doc/libs/1_79_0/
libs/beast/doc/html/beast/using_websocket.html [Access: 01.06.2022]

[11] WebSocket++ Library [online] https://docs.websocketpp.org/ [Access: 01.06.2022]

[12] C WebSocket Library [online] https://libwebsockets.org/ [Access: 01.06.2022]

[13] Prolog WebSocket Library [online] https://www.swi-prolog.org/pldoc/man?section=
websocket [Access: 01.06.2022]

[14] Haskell WebSocket Library [online] https://hackage.haskell.org/package/
websockets-0.12.7.3/docs/Network-WebSockets.html [Access: 01.06.2022]

39

https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/
https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/
https://www.statista.com/statistics/195140/new-user-generated-content-uploaded-by-users-per-minute/#:~:text=Media%20usage%20in%20an%20online%20minute%202020&text=A%20lot%20of%20things%20happen,are%20streamed%20by%20users%20worldwide
https://www.statista.com/statistics/195140/new-user-generated-content-uploaded-by-users-per-minute/#:~:text=Media%20usage%20in%20an%20online%20minute%202020&text=A%20lot%20of%20things%20happen,are%20streamed%20by%20users%20worldwide
https://www.statista.com/statistics/195140/new-user-generated-content-uploaded-by-users-per-minute/#:~:text=Media%20usage%20in%20an%20online%20minute%202020&text=A%20lot%20of%20things%20happen,are%20streamed%20by%20users%20worldwide
https://www.statista.com/statistics/195140/new-user-generated-content-uploaded-by-users-per-minute/#:~:text=Media%20usage%20in%20an%20online%20minute%202020&text=A%20lot%20of%20things%20happen,are%20streamed%20by%20users%20worldwide
https://www.scylladb.com/product/benchmarks/
https://www.scylladb.com/users/
https://www.scylladb.com/product/technology/
https://en.cppreference.com/w/cpp/20
https://datatracker.ietf.org/doc/html/rfc6455
https://crates.io/crates/tungstenite
https://websockets.readthedocs.io/en/stable/
https://www.boost.org/doc/libs/1_79_0/libs/beast/doc/html/beast/using_websocket.html
https://www.boost.org/doc/libs/1_79_0/libs/beast/doc/html/beast/using_websocket.html
https://docs.websocketpp.org/
https://libwebsockets.org/
https://www.swi-prolog.org/pldoc/man?section=websocket
https://www.swi-prolog.org/pldoc/man?section=websocket
https://hackage.haskell.org/package/websockets-0.12.7.3/docs/Network-WebSockets.html
https://hackage.haskell.org/package/websockets-0.12.7.3/docs/Network-WebSockets.html

[15] Seastar Documentation [online] http://docs.seastar.io/master/index.html
[Access: 03.06.2022]

[16] Documentation of data_sink class [online] http://docs.seastar.io/master/
classseastar_1_1data__sink.html [Access: 03.06.2022]

[17] Documentation of data_source class [online] http://docs.seastar.io/master/
classseastar_1_1data__source.html [Access: 03.06.2022]

[18] Documentation of input_stream class [online] http://docs.seastar.io/master/
classseastar_1_1data__source.html [Access: 03.06.2022]

[19] CQL Specification [online] https://github.com/apache/cassandra/blob/trunk/doc/
native_protocol_v4.spec [Access: 01.06.2022]

[20] React Terminal Library [online] https://www.npmjs.com/package/react-terminal
[Access: 01.06.2022]

[21] Material UI Website [online] https://mui.com/ [Access: 01.06.2022]

[22] React Icons Library [online] https://www.npmjs.com/package/react-loading-icons
[Access: 01.06.2022]

[23] ScyllaDB Main Repository [online] https://github.com/scylladb/scylla
[Access: 03.06.2022]

[24] Seastar Main Repository [online] https://github.com/scylladb/seastar
[Access: 03.06.2022]

[25] Repository with CQL Driver [online] https://github.com/dfilimonow/CQL-Driver
[Access: 03.06.2022]

[26] Repository with Web Terminal [online] https://github.com/gbzaleski/
ZPP-ScyllaDB-Front
[Access: 03.06.2022]

40

http://docs.seastar.io/master/index.html
http://docs.seastar.io/master/classseastar_1_1data__sink.html
http://docs.seastar.io/master/classseastar_1_1data__sink.html
http://docs.seastar.io/master/classseastar_1_1data__source.html
http://docs.seastar.io/master/classseastar_1_1data__source.html
http://docs.seastar.io/master/classseastar_1_1data__source.html
http://docs.seastar.io/master/classseastar_1_1data__source.html
https://github.com/apache/cassandra/blob/trunk/doc/native_protocol_v4.spec
https://github.com/apache/cassandra/blob/trunk/doc/native_protocol_v4.spec
https://www.npmjs.com/package/react-terminal
https://mui.com/
https://www.npmjs.com/package/react-loading-icons
https://github.com/scylladb/scylla
https://github.com/scylladb/seastar
https://github.com/dfilimonow/CQL-Driver
https://github.com/gbzaleski/ZPP-ScyllaDB-Front
https://github.com/gbzaleski/ZPP-ScyllaDB-Front

Appendix A

The structure of the source code

A.1. WebSocket Server

A.1.1. Seastar

• seastar/

– CMakeLists.txt - It was modified to add new files to the project.

– include/seastar/websocket/server.hh - Header file of the server code.

– src/websocket/server.cc - Source code of the server.

– demos

∗ websocket_demo.cc - Example WS echo server
∗ websocket_secure_demo.cc - Example WSS echo server

– tests/unit/websocket_test.cc - Tests

A.1.2. ScyllaDB

• scylla/

– CMakeLists.txt - It was modified to add new files to the project.

– configure.py - It was modified in order to add new files to the project.

– conf/scylla.yaml - The configuration file of the ScyllaDB. It was modified to add
the ability to configure the port and the address of the server.

– db - Files in this directory were modified in order to add the new configuration
options.

– main.cc - The main function of the ScyllaDB was modified to start the WebSocket
server.

– websocket - Files in this directory were created in order to start the WebScoket
server.

41

A.2. TypeScript CQL Driver

• src/

– Driver.ts - Representation of the whole driver.

– utils - Directory consisting of multiple utility functions.

– cql-types - Directory consisting of files that provide CQL types and their conver-
sions.

– functions - Files in this directory are used directly by the driver for its method
implementations.

A.3. In-browser Scylla terminal

• src/

– main.ts, App.tsx - Main react files wrapping entire project together.

– consts.js - Set of global constants used in throughout the project.

– assets/logo.webp - Picture of ScyllaDB logo used as watermark on the project.

– components/

∗ Terminal.tsx - Main component containing entire terminal with its subcompo-
nents.

∗ LaunchForm.tsx - Component with form for logging-in and authenticating con-
nections.

∗ TerminalHistory.tsx - Component displaying history of used commands.
∗ Input.ts - Component where user writes CQL and terminal commands.
∗ ServerResponse.tsx - Component which receives, parses and displays responses

sent by the database server through driver.
∗ TableDisplayer.tsx - Auxiliary component for displaying table responses.

42

	Introduction
	Terminology
	Used technologies
	Work Environment
	React
	TypeScript
	C++
	Seastar
	Scylla

	WebSocket Server
	WebSocket Protocol
	WebSocket communication process
	WebSocket frame

	Existing alternatives
	Server Model
	Implementation
	Server
	Connection
	WebSocket Parser

	WebSocket Secure
	Integration with Scylla

	TypeScript CQL Driver
	Existing alternatives
	Design
	Frame Creator
	Handshake Sender
	Query Sender
	Paging Handler
	Prepare Sender
	Execute Sender
	Consistency Changer
	Type Converter
	Authentication Handler
	Response Handler
	Error Handler

	Implementation
	Technology
	TypeScript
	Development
	Challenges

	In-browser Scylla terminal
	Existing alternatives
	Designing project
	Composition
	Connection & authentication pop-up form
	Command history
	Input section
	Response displayer

	Implementation
	Technology
	Functional React with TypeScript
	useState module (State Hook)
	useEffect module (Effect Hook)
	useMemo module (Memory Hook)
	Material UI
	Components division
	Iterative development
	Challenges
	Visual appearance

	Division of work
	Bibliography
	The structure of the source code
	WebSocket Server
	Seastar
	ScyllaDB

	TypeScript CQL Driver
	In-browser Scylla terminal

