
BEST PRACTICES GUIDE

Maximizing Scylla
Performance
A Guide to Getting the Most from Your Scylla Database

2

The purpose of this guide is to provide an
overview of the best practices for maximizing
the performance of Scylla, the next-generation
NoSQL database. Even though Scylla auto-tunes
itself for optimal performance, users still need
to apply best practices in order to get the most
out of their Scylla deployments.

GET ME UP AND RUNNING
In case you are not able to read this document
in full, here are the most important things to
remember:

• use the best hardware you can reasonably
afford

• install Scylla Monitoring Stack

• run scylla_setup script

• use Cassandra stress test

• expect to get at least 12.5K operations per
second (OPS) per physical core for simple
operations on selected hardware

WHY SHOULD I READ THIS?
I ALREADY KNOW HOW TO
EXECUTE A BENCHMARK
Scylla is different from any other NoSQL
database. It achieves the highest levels of
performance and takes full control of the
hardware by utilizing all of the server cores in
order to provide strict SLAs for low-latency
operations. If you run Scylla in an over-
committed environment, performance won’t just
be linearly slower — it will tank completely.

This is because Scylla has a reactor design
that runs on all the (configured) cores and a
scheduler that assumes a 0.5 ms tick. Scylla
does everything it can to control queues in
userspace and not in the OS/drives. Thus it
assumes the bandwidth that was measured by
scylla_setup.

However, it is not difficult to get the best
performance out of Scylla. It primarily tunes
itself automatically. Just make sure you don’t
work against the system.

INSTALL SCYLLA MONITORING
STACK
Install and use the Scylla Monitoring Stack,
which provides excellent additional value above
and beyond performance optimization. If you
cannot pinpoint a performance bottleneck, you
likely have not configured the system correctly.
Scylla Monitoring Stack will help to sort this out.

With the recent addition of the Scylla Advisor to
the Scylla Monitoring Stack, it is now even easier
to find potential issues.

INSTALL SCYLLA MANAGER
Install and use Scylla Manager together with
the Scylla Monitoring Stack. Scylla Manager
provides automated backups, and repairs of
your database. Scylla Manager can manage
multiple Scylla clusters and run cluster-wide
tasks in a controlled and predictable way.

RUN SCYLLA_SETUP
Before running Scylla, it is critical that the
scylla_setup script has been executed. Scylla
doesn’t require manual optimization – it is the
task of the scylla_setup script to determine the
optimal configuration. If scylla_setup has not
run, the system won’t be configured optimally.

 Read more here.

BENCHMARKING BEST PRACTICES

USE A REPRESENTATIVE ENVIRONMENT
Execute benchmarks on an environment
that reflects your production environment.
Benchmarking on the wrong environment
can easily lead to an order-of-magnitude
performance difference. For example, on a laptop
you might see 20K OPS while on a dedicated
server you could easily achieve 200K OPS.
Unless you have your production system running
on a laptop, do not benchmark on a laptop.

We recommend automating your benchmarking
with tools like Terraform/Ansible so you can
more easily repeat the benchmark test.

https://monitoring.docs.scylladb.com
https://www.scylladb.com/2021/02/03/introducing-the-new-scylla-monitoring-advisor/
https://scylladb.github.io/scylla-manager
https://monitoring.docs.scylladb.com
https://docs.scylladb.com/getting-started/system-configuration/

3

If you are using shared hardware in a
containerized/virtualized environment, be aware
that one guest can increase latency in other guests.

Also, make sure you do not underprovision
load generators, otherwise the load generators
themselves will be the bottleneck.

USE A REPRESENTATIVE DATA MODEL
Tools such as cassandra-stress use a default
data model that does not completely reflect
what actions you will perform in production.
For example, the cassandra-stress default data
model has a replication factor set to 1 and uses
the LOCAL_ONE as a consistency level.

Although cassandra_stress is a convenient way
to get some initial performance impressions,
it is critical to benchmark the same/similar
data model that you will use in production. We
therefore recommend that you use a custom
data model. For more information refer to the
user mode section in our documentation.

USE REPRESENTATIVE DATASETS
If you run the benchmark with a dataset that
is smaller than your production data, you may
have misleading or incorrect results due to the
reduced number of I/O operations. Therefore, it
is critical to configure the size of the dataset to
reflect your production dataset size.

USE A REPRESENTATIVE LOAD
Run the benchmark using a load that represents,
as closely as possible, the load you anticipate
having in production. This includes the queries
submitted by the load generator. When you use
the right type of queries, they are distributed
over the partitions and the ratio between read/
write remains relatively constant. The read/
write ratio is important due to the overhead of
compaction and finding the right data on disk.

PROPER WARMUP & DURATION
When benchmarking, it is important to give
the system time to warm up. This allows the
database to fill the cache. In addition, it is critical

to run the benchmarks long enough so that at
least one compaction is triggered.

LATENCY TEST VS THROUGHPUT TEST
When performing a load test you will need
to differentiate between a latency test and a
throughput test. With a throughput test, you
measure the maximum throughput by sending
a new request as soon as the previous request
completes. With a latency test, you pin the
throughput at a fixed rate. In both cases, latency
is measured.

Most engineers will start with a throughput
test, but often a latency test is a better choice
because they know the desired throughput,
e.g. 1M op/s. This is especially the case if your
production system must meet a specific SLA.
For example, the 99.99 percentile should have a
latency less than 10ms.

COORDINATED OMISSION
A common problem when measuring latencies
is the coordinated omission problem, which
causes the worst latencies to be omitted from
the measurements and, as a consequence,
renders the higher percentiles useless. A tool
like cassandra-stress prevents coordinated
omission from occurring.

 Read more here.

DON’T AVERAGE PERCENTILES
Another typical problem with benchmarks is
that when a load is generated by multiple load
generators, the percentiles are averaged. The
correct way to determine the percentiles over
multiple load generators is to merge the latency
distribution of each load generator and then to
determine the percentiles.

If this isn’t an option, then the next best
alternative is to take the maximum (the p99,
for example) of each of the load generators.
The actual p99 will be equal to or less than the
maximum p99.

 Read more here.

https://docs.scylladb.com/operating-scylla/admin-tools/cassandra-stress/
http://highscalability.com/blog/2015/10/5/your-load-generator-is-probably-lying-to-you-take-the-red-pi.html
http://pveentjer.blogspot.com/2017/08/percentiles-and-mean.html

4

USE PROVEN BENCHMARK TOOLS
Instead of rolling out custom benchmarks,
use proven tools like cassandra-stress.
Cassandra-stress is very flexible and takes
care of coordinated omission. Yahoo! Cloud
Serving Benchmark(YCSB) is also an option,
but needs to be configured correctly to
prevent coordinated omission. TLP-stress is
not recommended because it suffers from
coordinated omission.

When benchmarking make sure to use the
cassandra-stress that is part of the Scylla
distribution because it contains the shard-aware
drivers.

USE THE SAME BENCHMARKING TOOL
When benchmarking with different tools, it
is very easy to run into an apples vs oranges
comparison. When comparing products, use the
same benchmark tool, if possible.

REPRODUCIBLE RESULTS
Make sure that the outcomes of your benchmark
are reproducible, so execute your tests at least
twice. If the outcomes are different, then the
benchmark results are unreliable. One potential
cause could be that the data set of a previous
benchmark has not been cleaned, which can
lead to a performance difference for writes.

QUERY RECOMMENDATIONS

CORRECT DATA MODELING
The key to a well performing system is using
the properly defined data model. A poorly
structured data model can easily lead to an
order-of-magnitude performance difference
compared to a proper model.

A few of the most important tips:

• Choose the right partition key and clustering
keys. Reduce or even eliminate the amount of
data that needs to be scanned.

• Add indexes where appropriate.

• Partitions that are accessed more than others
(hot partitions) should be avoided because
they cause load imbalances between CPUs
and nodes.

• Large partitions, large rows and large cells
should be avoided because they can cause
high latencies.

USE PREPARED STATEMENTS
Prepared statements provide better
performance because: parsing is done once,
token/shard aware routing and less data is
sent. Apart from performance improvements,
prepared statements also increase security
because they prevent CQL injection.

 Read more here.

USE PAGED QUERIES
It is best to run queries that return a small
number of rows. But if a query could return
many rows, then an unpaged query can lead
to a huge memory bubble and Scylla could
eventually decide to kill the query. With a paged
query, the execution collects a page’s worth of
data and new pages are retrieved on demand,
leading to smaller memory bubbles.

 Read more here.

DON’T USE REVERSE QUERIES
When using a query with an ORDER BY clause,
you need to make sure that the order is the same
as in the data model. Otherwise you run into a
problem called reverse queries, which can cause
unbound memory usage and killed queries.

USE WORKLOAD PRIORITIZATION
In a typical application there are operational
workloads that require low latency. Sometimes
these run in parallel with analytic workloads
that process high volumes of data and do not
require low latency. With workload prioritization,
one can prevent the analytic workloads from
negatively impacting the latency-sensitive
operational workload.

 Read more here.

https://www.scylladb.com/2017/12/13/prepared-statements-scylla/
https://www.scylladb.com/2018/07/13/efficient-query-paging/
https://docs.scylladb.com/using-scylla/workload-prioritization/

5

BYPASS CACHE
There are certain workloads, e.g. analytical
workloads, that scan through all the data. By
default Scylla will try to use cache, but since
the data won’t be used again, it leads to cache
pollution — good data is pushed out of the
cache and replaced by useless data.

This can result in bad latency on operational
workloads due to increased rate of cache
misses. To prevent this problem, queries from
analytical workloads can bypass the cache using
the ‘bypass cache’ option.

 Read more here.

BATCHING
Multiple CQL queries to the same partition can
be batched into a single call. Imagine the round
trip time being 0.9 ms and the service time time
0.1 ms. Without batching the total latency would
be 10x(0.9+0.1)=10.0 ms. But if you would create
a batch of 10 instructions, the total time would
be 0.9+10*0.1=1.9 ms. That is 19% of the latency
compared to no batching.

 Read more here.

DRIVER GUIDELINES
Use the Scylla drivers that are available for
Java/Python/Go. They provide much better
performance than third-party drivers because
they are shard aware – they can route requests
to the right CPU core (shard). When the driver
starts, it gets the topology of the cluster and
therefore it knows exactly which CPU core
should get a request.

If Scylla drivers are not an option, make sure
that at least a token-aware driver is used so one
round trip is removed.

Check if there are sufficient connections
created by the client, otherwise performance
could suffer. The general rule is between 1-3
connections per Scylla CPU per node.

 Read more here.

HARDWARE GUIDELINES

CPU CORES COUNT GUIDELINES
By default Scylla will make use of all CPU
cores and is designed to perform well on
powerful machines. As a result, it requires
fewer machines. The recommended minimum
number of CPU cores per node for operational
workloads is 20.

The rule of thumb is that a single physical CPU
can process 12.5 K queries per second with a
payload of up to 1 KB. If a single node should
process 400K queries per second, at least 32
physical CPUs or 64 hyper-threaded cores are
required. In cloud environments hyper-threaded
cores are often called virtual CPUs (vCPUs) or
just cores. So it is important to determine if a
virtual CPU is the same as a physical CPU or if it
is a hyper-threaded CPU.

Scylla relies on temporarily spinning the CPU
instead of blocking and waiting for data to
arrive. This is done to lower latency due to
reduced context switching. The drawback is that
the CPUs are 100% utilized and you might falsely
conclude that Scylla can’t keep up with the load.

 Read more here.

MEMORY GUIDELINES
During the startup, Scylla will claim nearly all
memory for itself. This is done for caching
purposes to reduce the number of I/O
operations. The more memory, the better the
performance.

Scylla recommends at least 2 GB of memory per
core and a minimum of 16 GB of memory for a
system (pick the highest value). For example, if
you have a 64-core system, you should have at
least 2x64=128 GB of memory.

The max recommended ratio of storage/
memory for good performance is 30:1. So
for a system with 128 GB of memory, the
recommended upper bound on the storage
capacity is 3.8 TB per node of data. To
store 6 TB of data per node, the minimum
recommended amount of memory is 200 GB.

 Read more here and here.

https://docs.scylladb.com/getting-started/dml/#bypass-cache
https://docs.scylladb.com/getting-started/dml/#batch-statement
https://docs.scylladb.com/using-scylla/drivers-intro/
https://docs.scylladb.com/getting-started/system-requirements/
https://docs.scylladb.com/getting-started/system-requirements/
https://docs.scylladb.com/getting-started/scylla_in_a_shared_environment/

6

STORAGE GUIDELINES
Scylla can utilize the full potential of modern
NVMe SSDs. The faster the drive, the better the
Scylla performance. If there is more than one
SSD,
it is recommended to use them as RAID 0
forbest performance. This is configured during
the scylla_setup and Scylla will create the RAID
device automatically. If there is limited SSD
capacity, the commit log should be placed on
the SSD.

The recommended file system is XFS because
of its support for asynchronous appending
writes and because it is the primary file system
with which ScyllaDB is tested.

Because SSDs wear out over time, it is
recommended to rerun the iotune tool every
few months. This will help Scylla’s IO scheduler
make the best performing choices.

 Read more here.

NETWORKING GUIDELINES
For operational workloads the minimum
recommended network bandwidth is 10 Gbps.
The scylla_setup script takes care of optimizing
the kernel parameters, IRQ handling, etc.

 Read more here.

CLOUD COMPUTE INSTANCE
RECOMMENDATIONS
Scylla is designed to utilize all hardware
resources. Bare metal instances are preferred
for best performance.

 Read more here.

IMAGE GUIDELINES
Use Scylla provided AMI on AWS EC2, if
possible. They have already been correctly
configured.

AWS
AWS EC2 i3, i3en and cd5 bare metal instances
are highly recommended because they are
optimized for high I/O.

 Read more here.

If bare metal isn’t possible, use Nitro-based
instances and run with ‘host’ as tenancy policy.
This will prevent the instance being shared with
other VMs.

If the recommendation above isn’t possible,
we recommend instance storage over EBS. If
instance store is not an option, use an io2 IOPS
provisioned SSD for best performance. If there
is limited support for instance storage, place
the commit log there. There is a new instance
type available called r5b that has high EBS
performance.

 Read more here.

GCP
For GCP we recommend n1/n2-highmem with
local SSDs.

 Read more here.

AZURE
For Azure we recommend the Lsv2 series. They
feature high throughput and low latency and
have local NVMe storage.

 Read more here.

DOCKER
When running in the Docker platform, please
use CPU pinning and host networking for the
best performance.

 Read more here.

KUBERNETES
As with Docker, CPU pinning should be used on
Kubernetes environments as well. In this case
the pod should be pinned to a CPU so that no
sharing takes place.

https://docs.scylladb.com/getting-started/system-requirements/
https://docs.scylladb.com/getting-started/system-requirements/#network-requirements
https://docs.scylladb.com/getting-started/scylla_in_a_shared_environment/
https://docs.scylladb.com/getting-started/system-requirements/#supported-platforms
https://aws.amazon.com/blogs/aws/new-amazon-ec2-r5b-instances-providing-3x-higher-ebs-performance/
https://docs.scylladb.com/getting-started/system-requirements/#google-compute-engine-gce
https://docs.scylladb.com/getting-started/system-requirements/#microsoft-azure
https://docs.scylladb.com/operating-scylla/procedures/tips/best_practices_scylla_on_docker/

7

DATA COMPACTION
When records are updated or deleted, the
old data eventually needs to be deleted. This
is done using compaction. The compaction
settings can make a huge difference. Check the
following matrix to understand how to configure
compaction for your use case:

Incremental Compaction Strategy (ICS) is a
feature exclusively available in Scylla Enterprise.
It combines the low space amplification of LCS
with the low write amplification of STCS. ICS is
the default strategy for Scylla Enterprise.

If you have time series data, the TWCS should
be used.

 Read more here.

CONSISTENCY LEVEL
The consistency level determines how many
nodes the coordinator should wait for in
order for the read or write to be considered a
success. The consistency level is determined
by the application based on requirements for
consistency, availability and performance. The
higher the consistency, the lower the availability
and the performance.

For single data center setups a frequently used
consistency level for both reads and writes
is QUORUM. It gives a nice balance between
consistency and availability/performance.

For multi-datacenter setups it is best to use
LOCAL_QUORUM.

 Read more here.

REPLICATION FACTOR
The recommended replication factor is set to
3, and in most cases this is a sensible default
because it provides a good balance between
performance and availability. Keep in mind that
a write will always be sent to all replicas, no
matter the consistency level.

ASYNCHRONOUS REQUESTS
Using asynchronous requests can help to
increase the throughput of the system. If the
latency would be 1 ms, then 1 thread at most
could do 1000 QPS. But if an operation takes
a service time of 100 us, with pipelining the
throughput could increase to 10.000 QPS.

To prevent overload due to asynchronous
requests, the drivers limit the number of
pending requests to prevent overloading
the server.

 Read more here.

CONCLUSION
Scylla has excellent performance out of the box.
Following the best practices described in this
paper will prevent mistakes that might diminish
the performance of your Scylla deployment.

Workload/
Compaction
Strategy

STCS LCS ICS TWCS

Write only + - + -
Overwrite + - + -
Read mostly,
with few
updates

- + - -

Read-mostly
with many
updates

+ - + -

Time series - - - +

https://docs.scylladb.com/architecture/compaction/compaction-strategies/#which-strategy-is-best
https://docs.scylladb.com/architecture/architecture-fault-tolerance/
https://www.scylladb.com/2019/11/20/maximizing-performance-via-concurrency-while-minimizing-timeouts-in-distributed-databases/

Copyright © 2021 ScyllaDB Inc. All rights reserved. All trademarks or
registered trademarks used herein are property of their respective owners.

United States Headquarters
2445 Faber Place, Suite 200
Palo Alto, CA 94303 U.S.A.
Email: info@scylladb.com

Israel Headquarters
11 Galgalei Haplada
Herzelia, Israel

SCYLLADB.COM

ABOUT SCYLLADB

Scylla is the real-time big data database. API-compatible
with Apache Cassandra and Amazon DynamoDB, Scylla
embraces a shared-nothing approach that increases
throughput and storage capacity as much as 10X.
Comcast, Discord, Disney+ Hotstar, Grab, Medium,
Starbucks, Ola Cabs, Samsung, IBM, Investing.com and
many more leading companies have adopted Scylla to
realize order-of-magnitude performance improvements
and reduce hardware costs. Scylla’s database is available
as an open source project, an enterprise edition and a
fully managed database as a service. ScyllaDB was
founded by the team responsible for the KVM hypervisor.
For more information: ScyllaDB.com

https://www.scylladb.com/users/
https://www.scylladb.com/

