
SCYLLADB WHITE PAPER

Worry-Free Ingestion:
Flow Control of Writes
in Scylla
Over-eager ingestion can result in a buildup of queues
of background writes, possibly to the point of depleting
available memory. This paper explains how Scylla ensures
that ingestion of data proceeds as quickly as possible,
but not quicker.

CONTENTS

ABSTRACT 3

INTRODUCTION 3

THE PROBLEM OF BACKGROUND WRITES 4

THE SLOW NODE EXAMPLE 4

THROTTLING TO LIMIT BACKGROUND WRITES 5

THE PROBLEM OF BACKGROUND VIEW UPDATES 6

THROTTLING TO LIMIT BACKGROUND VIEW UPDATES 7

CONCLUSION 9

3

ABSTRACT
This paper explains how Scylla ensures that
ingestion of data proceeds as quickly as
possible, but not quicker. It looks into the
existing flow-control mechanism for tables
without materialized views, and into the new
mechanism for tables with materialized views,
which is introduced in the upcoming Scylla
open-source release 3.0.

INTRODUCTION
In this paper we look into ingestion of data into
a Scylla cluster. What happens when we make a
large volume of update (write) requests?

We would like the ingestion to proceed as
quickly as possible but without overwhelming
the servers. An over-eager client may send write
requests faster than the cluster can complete
earlier requests. If this is only a short burst of
requests, Scylla can absorb the excess requests
in a queue or numerous queues distributed
throughout the cluster (we’ll look at the details
of these queues below). But had we allowed
the client to continue writing at this excessive
rate, the backlog of uncompleted writes would
continue to grow until the servers run out of
memory and possibly crash. So as the backlog
grows, we need to find a way for the server to
tell the client to slow down its request rate. If
we can’t slow down the client, we have to start
failing new requests.

Cassandra’s CQL protocol does not offer any
explicit flow-control mechanisms for the server
to slow down a client which is sending requests
faster than the server can handle them. We
only have two options to work with: delaying
replies to the client’s requests, and failing them.
How we can use these two options depends
on what drives the workload: We consider two
different workload models—a batch workload
with bounded concurrency, and an interactive
workload with unbounded concurrency:

1. In a batch workload, a client application
wishes to drive the server at 100% utilization

for a long time, to complete some predefined
amount of work. There is a fixed number of
client threads, each running a request loop:
preparing some data, making a write request,
and waiting for its response. The server can
fully control the request rate by rate-limiting
(delaying) its replies: If the server only sends
N replies per second, the client will only send
N new requests per second. We call this rate-
limiting of replies, or throttling.

2. In an interactive workload, the client sends
requests driven by some external events (e.g.,
activity of real users). These requests can
come at any rate, which is unrelated to the
rate at which the server completes previous
requests. For such a workload, if the request
rate is at or below the cluster’s capacity,
everything is fine and the request backlog
will be mostly empty. But if the request rate is
above the cluster’s capacity, the server has no
way of slowing down these requests and the
backlog grows and grows. If we don’t want to
crash the server (and of course, we don’t), we
have no choice but to return failure for some
of these requests.

When we do fail requests, it’s also important
how we fail: We should fail fresh new, not yet
handled, client requests. It’s a bad idea to fail
requests to which we had already devoted
significant work—if the server spends valuable
CPU time on requests which will end up being
failed anyway, and throughput will lower.
We use the term admission control for a
mechanism which fails a new request when it
believes the server will not have the resources
needed to handle the request to completion.

For these reasons Scylla utilizes both throttling
and admission control. Both are necessary.
Throttling is a necessary part of handling normal
batch workloads, and admission control is
needed for unexpected overload situations. In
this post, we will focus on the throttling part.

We sometimes use the term backpressure
to describe throttling, which metaphorically
takes the memory “pressure” (growing queues)
which the server is experiencing, and feeds it

4

back to the client. However, this term may be
confusing, as historically it was used for other
forms of flow control, not for delaying replies
as a mechanism to limit the request rate. In
the rest of this document I’ll try to avoid the
term “backpressure” in favor of other terms like
throttling and flow control.

Above we defined two workload models—
interactive and and batch workloads. We can,
of course, be faced by a combination of both.
Moreover, even batch workloads may involve
several independent batch clients, starting
at different times and working with different
concurrencies. The sum of several such batch
workloads can be represented as one batch
workload with a changing client concurrency.
E.g., a workload can start with concurrency 100
for one minute, then go to concurrency 200 for
another minute, etc. Our flow control algorithms
need to reasonably handle this case as well, and
react to a client’s changing concurrency. As an
example, consider that the client doubled the
number of threads. Since the total number of
writes the server can handle per second remains
the same, now each client thread will need to
send requests at half the rate it sent earlier
when there were just half the number of threads.

THE PROBLEM OF BACKGROUND
WRITES
Let’s first look at writes to regular Scylla tables
which do not have materialized views. Later
we can see how materialized views further
complicate matters.

A client sends an update (a write request) to
a coordinator node, which sends the update
to RF replicas (RF is the replication factor—
e.g., 3). The coordinator then waits for first
CL (consistency level—e.g., 2) of those writes
to have completed, at which point it sends
a reply to the client, saying that the desired
consistency-level has been achieved. The
remaining ongoing writes to replicas (RF-CL—
in the above examples =1 remaining write) will
then continue “in the background”, i.e., after the
response to the client, and without the client
waiting for them to finish.

The problem with these background writes
is that a batch workload, upon receiving the
server’s reply, will send a new request before
these background writes finish. So if new writes
come in faster than we can finish background
writes, the number of these background writes
can grow without bound. But background
writes take memory, so we cannot allow them
to grow without bound. We need to apply some
throttling to slow the workload down.

THE SLOW NODE EXAMPLE
Before we explain how Scylla does this
throttling, it is instructive to look at one
concrete—and common—case where
background writes pile up and throttling
becomes necessary.

This is the case where one of the nodes happens
to be, for some reason, consistently slower than
the others. It doesn’t have to be much slower—
even a tiny bit slower can cause problems:

Consider, for example, three nodes and a table
with RF=3, i.e., all data is replicated on all three
nodes, so all writes need to go to all three.
Consider than one node is just 1% slower: Two
of the nodes can complete 10,000 replica writes
per second, while the third can only complete
9,900 replica writes per second. If we do CL=2
writes, then every second 10,000 of these writes
can complete after node 1 and 2 completed their
work. But since node 3 can only finish 9,900
writes in this second, we will have added 100
new “background writes” waiting for the write
to node 3 to complete. We will continue to
accumulate 100 additional background writes
each second and, for example, after 100 seconds
we will have accumulated 10,000 background
writes. And this will continue until we run out of
memory, unless we slow down the client to only
9,900 writes per second (and in a moment, we’ll
explain how).

It is possible to demonstrate this and similar
situations in real-life Scylla clusters. But to
make it easier to play with different scenarios
and flow-control algorithms, we wrote a simple
simulator. In the simulator we can exactly control

5

the client’s concurrency, the rate at which each
replica completes write requests, and then graph
the lengths of the various queues, the overall
write performance, and so on, and investigate
how those respond to different throttling
algorithms.

In our simple “slow node” example, we see the
following results from the simulator:

In the top graph, we see that a client with
fixed concurrency (arbitrarily chosen as 50
threads) writing with CL=2 will, after a short
burst, get 10,000 replies each second, i.e.,
the speed of the two fastest nodes. But while
staying at that speed, we see in the bottom
graph that the backlog of background writes
grows continuously—100 every second, as we
suspected. We need to slow down the client to
curb this growth.

It’s obvious from the description above that
any consistent difference in node performance,
even much smaller than 1%, will eventually cause
throttling to be needed to avoid filling the entire
memory with backlogged writes. In real-life
such small performance differences do happen
in clouds, e.g., because some of the VMs have
busier “neighbors” than others.

THROTTLING TO LIMIT BACKGROUND
WRITES
Scylla applies a simple, but effective, throttling
mechanism: When the total amount of memory
that background writes are currently using goes
over some limit—currently 10% of the shard’s
memory—the coordinator starts throttling
the client by no longer moving writes from
foreground to background mode. This means
that the coordinator will only reply when all RF
replica writes have completed, with no additional
work left in the background. When this throttling
is on, the backlog of background writes does
not continue to grow, and replies are only sent
at the rate we can complete all the work, so a
batch workload will slow down its requests to
the same rate.

It is worth noting that when throttling is needed,
the queue of background writes will typically
hover around its threshold size (e.g., 10% of
memory). When a flow-control algorithm always
keeps a full queue, it is said to suffer from the
bufferbloat problem. The typical bufferbloat
side-effect is increased latency, but happily in
our case this is not an issue: The client does
not wait for the background writes (since the
coordinator has already returned a reply), so
the client will experience low latency even
when the queue of background writes is
full. Nevertheless, the full queue does have
downsides: it wastes memory and it prevents
the queue from absorbing writes to a node that
temporarily goes down.

https://en.wikipedia.org/wiki/Bufferbloat

6

Let’s return to our “slow node” simulation from
above, and see how this throttling algorithm
indeed helps to curb the growth of the backlog
of background writes:

As before, we see in the top graph that the
server starts by sending 10,000 replies per
second, which is the speed of the two fastest
nodes (remember we asked for CL=2). At that
rate, the bottom graph shows we are accruing a
backlog of 100 background writes per second,
until at time 3, the backlog has grown to 300
items. In this simulation we chose 300 as
background write limit (representing the 10%
of the shard’s memory in real Scylla). So at that
point, as explained above, the client is throttled
by having its writes wait for all three replica
writes to complete. Those will only complete
at rate of 9,900 per second (the rate of the
slowest node), so the client will slow down to
this rate (top graph, starting from time 3), and

the background write queue will stop growing
(bottom graph). If the same workload continues,
the background write queue will remain full (at
the threshold 300)—if it temporarily goes below
the threshold, throttling is disabled and the
queue will start growing back to the threshold.

THE PROBLEM OF BACKGROUND
VIEW UPDATES
After understanding how Scylla throttles
writes to ordinary tables, let’s look at how
Scylla throttles writes to materialized views.
Materialized views were introduced in Scylla 2.0
as an experimental feature—please refer to this
blog post if you are not familiar with them. They
became officially supported with the January
2019 release of Scylla Open Source 3.0, which
also introduced the throttling mechanism we
describe now, to slow down ingestion to the rate
at which Scylla can safely write the base table
and all its materialized views.

As before, a client sends a write requests to a
coordinator, and the coordinator sends them
to RF (e.g., 3) replica nodes, and waits for CL
(e.g., 2) of them to complete, or for all of them
to complete if the backlog of background
write reached the limit. But when the table
(also known as the base table) has associated
materialized views, each of the base replicas
now also sends updates to one or more paired
view replicas—other nodes holding the relevant
rows of the materialized views.

The exact details of which updates we send,
where, and why is beyond the scope of this
post. But what is important to know here is
that the sending of the view updates always
happens asynchronously—i.e., the base replica
doesn’t wait for it, and therefore the coordinator
does not wait for it either—only the completion
of enough writes to the base replicas will
determine when the coordinator finally replies
to the client.

The fact that the client does not wait for the
view updates to complete has been a topic
for heated debate ever since the materialized-
view feature was first designed for Cassandra.

https://www.scylladb.com/2017/07/27/materialized-views-preview-scylla-2-0/
https://www.scylladb.com/2017/07/27/materialized-views-preview-scylla-2-0/

7

The problem is that if a base replica waits for
updates to several view replicas to complete,
this hurts high availability which is a cornerstone
of Cassandra’s and Scylla’s design.

Because the client does not wait for outstanding
view updates to complete, their number may
grow without bound and use unbounded
amounts of memory on the various nodes
involved—the coordinator, the RF base replicas
and all the view replicas involved in the write. As
in the previous section, here too we need to start
slowing down the client, until the rate when the
system completes background work at the same
rate as new background work is generated.

To illustrate the problem Scylla needed to
solve, let’s use our simulator again to look at a
concrete example, continuing the same scenario
we used above. Again we have three nodes,
RF=3, client with 50 threads writing with CL=2.
As before two nodes can complete 10,000 base
writes per second, and the third only 9,900. But
now we introduce a new constraint: the view
updates add considerable work to each write, to
the point that the cluster can now only complete
3,000 writes per second, down from the 9,900
it could complete without materialized views.
The simulator shows us (top graph below)
that, unsurprisingly, without a new flow-control
mechanism for view writes the client is only
slowed down to 9,900 requests per second, not
to 3,000. The bottom graph shows that at this
request rate, the memory devoted to incomplete
view writes just grows and grows, by as many as
6,900 (=9,900-3,000) updates per second:

So, what we need now is to find a mechanism
for the coordinator to slow down the client to
exactly 3,000 requests per second. But how
do we slow down the client, and how does the
coordinator know that 3,000 is the right request
rate?

THROTTLING TO LIMIT BACKGROUND
VIEW UPDATES
Let us now explain how Scylla 3.0 throttles the
client to limit the backlog of view updates.

We begin with two key insights:

1. To slow down a batch client (with bounded
concurrency), we can add an artificial delay
to every response. The longer the delay is, the
lower the client’s request rate will become.

2. The chosen delay influences the size of the
view-update backlog: Picking a higher delay
slows down the client and slows the growth
of the view update backlog, or even starts
reducing it. Picking a lower delay speeds up
the client and increases the growth of the
backlog.

Basically, our plan is to devise a controller, which
changes the delay based on the current backlog,
trying to keep the length of the backlog in a
desired range.

The simplest imaginable controller, a linear
function, works amazingly well:

 (1) delay = α . backlog

8

Here α is any constant. Why does this
deceptively-simple controller work?

Remember that if delay is too small, backlog
starts increasing, and if delay is too large, the
backlog starts shrinking. So there is some “just
right” delay, where the backlog size neither
grows nor decreases. The linear controller
converges on exactly this just-right delay:

1. If delay is lower than the just-right one, the
client is too fast, the backlog increases, so
according to our formula (1), we will increase
delay.

2. If delay is higher than the just-right one, the
client is too slow, the backlog shrinks, so
according to (1), we will decrease delay.

Let’s add to our simulator the ability to delay
responses by a given delay amount, and to vary
this delay according to the view update backlog
in the base replicas, using formula (1). The result
of this simulation looks like this:

In the top graph, we see the client’s request
rate gradually converging to exactly the request
rate we expected: 3,000 requests per second.
In the bottom graph, the backlog length settles
on about 1600 updates. The backlog then stops
growing any more—which was our goal.

But why did the backlog settle on 1600, and not
on 100 or 1,000,000? Remember that the linear
control function (1) works for any α. In the above
simulation, we took α =1.0 and the result was
convergence on backlog=1600. If we change α,
the delay to which we converge will still have
to be the same, so (1) tells us that, for example,
if we double α to 2.0, the converged backlog
will halve, to 800. In this manner, if we gradually
change α we can reach any desired backlog
length. Here is an example, again from our
simulator, where we gradually changed α with
the goal of reaching a backlog length of 200:

9

Indeed, we can see in the lower graph that
after over-shooting the desired queue length
200 and reaching 700, the controller continues
to increase to decrease the backlog, until
the backlog settles on exactly the desired
length—200. In the top graph we see that as
expected, the client is indeed slowed down to
3,000 requests per second. Interestingly in this
graph, we also see a “dip”, a short period where
the client was slowed down even further, to just
2,000 requests per second. The reason for this
is easy to understand: The client starts too fast,
and a backlog starts forming. At some point
the backlog reached 700. Because we want to
decrease this backlog (to 200), we must have
a period where the client sends less than 3,000
requests per second, so that the backlog would
shrink.

In controller-theory lingo, the controller with the
changing is said to have an integral term: the
control function depends not just on the current
value of the variable (the backlog) but also on
the previous history of the controller.

In (1), we considered the simplest possible
controller—a linear function. But the proof above
that it converges on the correct solution did not
rely on this linearity. The delay can be set to any
other monotonically-increasing function of the
backlog:

 (2) delay = f(backlog / backlog0) * delay0

(where backlog0 is a constant with backlog units,
and delay0 is a constant with time units).

In Scylla 3.0 we chose this function to be a
polynomial, selected to allow relatively-high
delays to be reached without requiring very long
backlogs in the steady state. But we do plan
to continue improving this controller in future
releases.

CONCLUSION
A common theme in Scylla’s design is the
autonomous database, a.k.a. zero configuration.
In this paper we covered another aspect of this
theme: When a user unleashes a large writing
job on Scylla, we don’t want him or her to need
to configure the client to use a certain speed
or risk overrunning Scylla. We also don’t want
the user to need to configure Scylla to limit an
over-eager client. Rather, we want everything
to happen automatically: The write job should
just just run normally without any artificial limits,
and Scylla should automatically slow it down to
exactly the right pace—not too fast that we start
piling up queues until we run out of memory, but
also not too slow that we let available resources
go to waste.

We explained how Scylla throttles (slows down)
the client by delaying its responses, and how
we arrive at exactly the right pace. We started
with describing how throttling works for writes
to ordinary tables—a feature that had been in
Scylla for well over a year. We then described
the more elaborate mechanisms we introduce
in Scylla 3.0 for throttling writes to tables with
materialized views. For demonstration purposes,
we used a simulator for the different flow-
control mechanisms to better illustrate how they
work. However, these same algorithms have also
been implemented in Scylla itself—so go ahead
and ingest some data! Full steam ahead!

Copyright © 2020 ScyllaDB Inc. All rights reserved. All trademarks or
registered trademarks used herein are property of their respective owners.

United States Headquarters
2445 Faber Place, Suite 200
Palo Alto, CA 94303 U.S.A.
Email: info@scylladb.com

Israel Headquarters
11 Galgalei Haplada
Herzelia, Israel

SCYLLADB.COM

ABOUT SCYLLADB

Scylla is the real-time big data database. A drop-in
alternative to Apache Cassandra and Amazon DynamoDB,
Scylla embraces a shared-nothing approach that increases
throughput and storage capacity as much as 10X that of
Cassandra. AdGear, AppNexus, Comcast, Fanatics, FireEye,
Grab, IBM Compose, MediaMath, Ola Cabs, Samsung,
Starbucks and many more leading companies have
adopted Scylla to realize order-of-magnitude performance
improvements and reduce hardware costs. Scylla is available
in Open Source, Enterprise and fully managed Cloud
editions. ScyllaDB was founded by the team responsible
for the KVM hypervisor and is backed by Bessemer Venture
Partners, Eight Roads Ventures, Innovation Endeavors,
Magma Venture Partners, Qualcomm Ventures, Samsung
Ventures, TLV Partners, Western Digital Capital and Wing
Venture Capital.
For more information: ScyllaDB.com

https://www.scylladb.com/users/

