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Worry-Free Ingestion: 
Flow Control of Writes 
in Scylla 
Over-eager ingestion can result in a buildup of queues  
of background writes, possibly to the point of depleting 
available memory. This paper explains how Scylla ensures 
that ingestion of data proceeds as quickly as possible,  
but not quicker.



CONTENTS

ABSTRACT 3

INTRODUCTION 3

THE PROBLEM OF BACKGROUND WRITES 4

THE SLOW NODE EXAMPLE 4

THROTTLING TO LIMIT BACKGROUND WRITES 5

THE PROBLEM OF BACKGROUND VIEW UPDATES 6

THROTTLING TO LIMIT BACKGROUND VIEW UPDATES 7

CONCLUSION 9



3

ABSTRACT
This paper explains how Scylla ensures that 
ingestion of data proceeds as quickly as 
possible, but not quicker. It looks into the 
existing flow-control mechanism for tables 
without materialized views, and into the new 
mechanism for tables with materialized views, 
which is introduced in the upcoming Scylla 
open-source release 3.0.

INTRODUCTION
In this paper we look into ingestion of data into 
a Scylla cluster. What happens when we make a 
large volume of update (write) requests?

We would like the ingestion to proceed as 
quickly as possible but without overwhelming 
the servers. An over-eager client may send write 
requests faster than the cluster can complete 
earlier requests. If this is only a short burst of 
requests, Scylla can absorb the excess requests 
in a queue or numerous queues distributed 
throughout the cluster (we’ll look at the details 
of these queues below). But had we allowed 
the client to continue writing at this excessive 
rate, the backlog of uncompleted writes would 
continue to grow until the servers run out of 
memory and possibly crash. So as the backlog 
grows, we need to find a way for the server to 
tell the client to slow down its request rate. If 
we can’t slow down the client, we have to start 
failing new requests.

Cassandra’s CQL protocol does not offer any 
explicit flow-control mechanisms for the server 
to slow down a client which is sending requests 
faster than the server can handle them. We 
only have two options to work with: delaying 
replies to the client’s requests, and failing them. 
How we can use these two options depends 
on what drives the workload: We consider two 
different workload models—a batch workload 
with bounded concurrency, and an interactive 
workload with unbounded concurrency:

1. In a batch workload, a client application 
wishes to drive the server at 100% utilization 

for a long time, to complete some predefined 
amount of work. There is a fixed number of 
client threads, each running a request loop: 
preparing some data, making a write request, 
and waiting for its response. The server can 
fully control the request rate by rate-limiting 
(delaying) its replies: If the server only sends 
N replies per second, the client will only send 
N new requests per second. We call this rate-
limiting of replies, or throttling.

2. In an interactive workload, the client sends 
requests driven by some external events (e.g., 
activity of real users). These requests can 
come at any rate, which is unrelated to the 
rate at which the server completes previous 
requests. For such a workload, if the request 
rate is at or below the cluster’s capacity, 
everything is fine and the request backlog 
will be mostly empty. But if the request rate is 
above the cluster’s capacity, the server has no 
way of slowing down these requests and the 
backlog grows and grows. If we don’t want to 
crash the server (and of course, we don’t), we 
have no choice but to return failure for some 
of these requests. 
 
When we do fail requests, it’s also important 
how we fail: We should fail fresh new, not yet 
handled, client requests. It’s a bad idea to fail 
requests to which we had already devoted 
significant work—if the server spends valuable 
CPU time on requests which will end up being 
failed anyway, and throughput will lower. 
We use the term admission control for a 
mechanism which fails a new request when it 
believes the server will not have the resources 
needed to handle the request to completion. 

For these reasons Scylla utilizes both throttling 
and admission control. Both are necessary. 
Throttling is a necessary part of handling normal 
batch workloads, and admission control is 
needed for unexpected overload situations. In 
this post, we will focus on the throttling part.

We sometimes use the term backpressure 
to describe throttling, which metaphorically 
takes the memory “pressure” (growing queues) 
which the server is experiencing, and feeds it 
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back to the client. However, this term may be 
confusing, as historically it was used for other 
forms of flow control, not for delaying replies 
as a mechanism to limit the request rate. In 
the rest of this document I’ll try to avoid the 
term “backpressure” in favor of other terms like 
throttling and flow control.

Above we defined two workload models—
interactive and and batch workloads. We can, 
of course, be faced by a combination of both. 
Moreover, even batch workloads may involve 
several independent batch clients, starting 
at different times and working with different 
concurrencies. The sum of several such batch 
workloads can be represented as one batch 
workload with a changing client concurrency. 
E.g., a workload can start with concurrency 100 
for one minute, then go to concurrency 200 for 
another minute, etc. Our flow control algorithms 
need to reasonably handle this case as well, and 
react to a client’s changing concurrency. As an 
example, consider that the client doubled the 
number of threads. Since the total number of 
writes the server can handle per second remains 
the same, now each client thread will need to 
send requests at half the rate it sent earlier 
when there were just half the number of threads.

THE PROBLEM OF BACKGROUND 
WRITES
Let’s first look at writes to regular Scylla tables 
which do not have materialized views. Later 
we can see how materialized views further 
complicate matters.

A client sends an update (a write request) to  
a coordinator node, which sends the update  
to RF replicas (RF is the replication factor— 
e.g., 3). The coordinator then waits for first 
CL (consistency level—e.g., 2) of those writes 
to have completed, at which point it sends 
a reply to the client, saying that the desired 
consistency-level has been achieved. The 
remaining ongoing writes to replicas (RF-CL—
in the above examples =1 remaining write) will 
then continue “in the background”, i.e., after the 
response to the client, and without the client 
waiting for them to finish.

The problem with these background writes 
is that a batch workload, upon receiving the 
server’s reply, will send a new request before 
these background writes finish. So if new writes 
come in faster than we can finish background 
writes, the number of these background writes 
can grow without bound. But background 
writes take memory, so we cannot allow them 
to grow without bound. We need to apply some 
throttling to slow the workload down.

THE SLOW NODE EXAMPLE
Before we explain how Scylla does this 
throttling, it is instructive to look at one 
concrete—and common—case where 
background writes pile up and throttling 
becomes necessary.

This is the case where one of the nodes happens 
to be, for some reason, consistently slower than 
the others. It doesn’t have to be much slower—
even a tiny bit slower can cause problems:

Consider, for example, three nodes and a table 
with RF=3, i.e., all data is replicated on all three 
nodes, so all writes need to go to all three. 
Consider than one node is just 1% slower: Two 
of the nodes can complete 10,000 replica writes 
per second, while the third can only complete 
9,900 replica writes per second. If we do CL=2 
writes, then every second 10,000 of these writes 
can complete after node 1 and 2 completed their 
work. But since node 3 can only finish 9,900 
writes in this second, we will have added 100 
new “background writes” waiting for the write 
to node 3 to complete. We will continue to 
accumulate 100 additional background writes 
each second and, for example, after 100 seconds 
we will have accumulated 10,000 background 
writes. And this will continue until we run out of 
memory, unless we slow down the client to only 
9,900 writes per second (and in a moment, we’ll 
explain how).

It is possible to demonstrate this and similar 
situations in real-life Scylla clusters. But to 
make it easier to play with different scenarios 
and flow-control algorithms, we wrote a simple 
simulator. In the simulator we can exactly control 
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the client’s concurrency, the rate at which each 
replica completes write requests, and then graph 
the lengths of the various queues, the overall 
write performance, and so on, and investigate 
how those respond to different throttling 
algorithms.

In our simple “slow node” example, we see the 
following results from the simulator:

In the top graph, we see that a client with 
fixed concurrency (arbitrarily chosen as 50 
threads) writing with CL=2 will, after a short 
burst, get 10,000 replies each second, i.e., 
the speed of the two fastest nodes. But while 
staying at that speed, we see in the bottom 
graph that the backlog of background writes 
grows continuously—100 every second, as we 
suspected. We need to slow down the client to 
curb this growth.

It’s obvious from the description above that 
any consistent difference in node performance, 
even much smaller than 1%, will eventually cause 
throttling to be needed to avoid filling the entire 
memory with backlogged writes. In real-life 
such small performance differences do happen 
in clouds, e.g., because some of the VMs have 
busier “neighbors” than others.

THROTTLING TO LIMIT BACKGROUND 
WRITES
Scylla applies a simple, but effective, throttling 
mechanism: When the total amount of memory 
that background writes are currently using goes 
over some limit—currently 10% of the shard’s 
memory—the coordinator starts throttling 
the client by no longer moving writes from 
foreground to background mode. This means 
that the coordinator will only reply when all RF 
replica writes have completed, with no additional 
work left in the background. When this throttling 
is on, the backlog of background writes does 
not continue to grow, and replies are only sent 
at the rate we can complete all the work, so a 
batch workload will slow down its requests to 
the same rate.

It is worth noting that when throttling is needed, 
the queue of background writes will typically 
hover around its threshold size (e.g., 10% of 
memory). When a flow-control algorithm always 
keeps a full queue, it is said to suffer from the 
bufferbloat problem. The typical bufferbloat 
side-effect is increased latency, but happily in 
our case this is not an issue: The client does 
not wait for the background writes (since the 
coordinator has already returned a reply), so  
the client will experience low latency even 
when the queue of background writes is 
full. Nevertheless, the full queue does have 
downsides: it wastes memory and it prevents 
the queue from absorbing writes to a node that 
temporarily goes down. 

https://en.wikipedia.org/wiki/Bufferbloat
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Let’s return to our “slow node” simulation from 
above, and see how this throttling algorithm 
indeed helps to curb the growth of the backlog 
of background writes:

As before, we see in the top graph that the 
server starts by sending 10,000 replies per 
second, which is the speed of the two fastest 
nodes (remember we asked for CL=2). At that 
rate, the bottom graph shows we are accruing a 
backlog of 100 background writes per second, 
until at time 3, the backlog has grown to 300 
items. In this simulation we chose 300 as 
background write limit (representing the 10% 
of the shard’s memory in real Scylla). So at that 
point, as explained above, the client is throttled 
by having its writes wait for all three replica 
writes to complete. Those will only complete 
at rate of 9,900 per second (the rate of the 
slowest node), so the client will slow down to 
this rate (top graph, starting from time 3), and 

the background write queue will stop growing 
(bottom graph). If the same workload continues, 
the background write queue will remain full (at 
the threshold 300)—if it temporarily goes below 
the threshold, throttling is disabled and the 
queue will start growing back to the threshold.

THE PROBLEM OF BACKGROUND 
VIEW UPDATES
After understanding how Scylla throttles 
writes to ordinary tables, let’s look at how 
Scylla throttles writes to materialized views. 
Materialized views were introduced in Scylla 2.0 
as an experimental feature—please refer to this 
blog post if you are not familiar with them. They 
became officially supported with the January 
2019 release of Scylla Open Source 3.0, which 
also introduced the throttling mechanism we 
describe now, to slow down ingestion to the rate 
at which Scylla can safely write the base table 
and all its materialized views.

As before, a client sends a write requests to a 
coordinator, and the coordinator sends them 
to RF (e.g., 3) replica nodes, and waits for CL 
(e.g., 2) of them to complete, or for all of them 
to complete if the backlog of background 
write reached the limit. But when the table 
(also known as the base table) has associated 
materialized views, each of the base replicas 
now also sends updates to one or more paired 
view replicas—other nodes holding the relevant 
rows of the materialized views.

The exact details of which updates we send, 
where, and why is beyond the scope of this 
post. But what is important to know here is 
that the sending of the view updates always 
happens asynchronously—i.e., the base replica 
doesn’t wait for it, and therefore the coordinator 
does not wait for it either—only the completion 
of enough writes to the base replicas will 
determine when the coordinator finally replies  
to the client.

The fact that the client does not wait for the 
view updates to complete has been a topic 
for heated debate ever since the materialized-
view feature was first designed for Cassandra. 

https://www.scylladb.com/2017/07/27/materialized-views-preview-scylla-2-0/
https://www.scylladb.com/2017/07/27/materialized-views-preview-scylla-2-0/
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The problem is that if a base replica waits for 
updates to several view replicas to complete, 
this hurts high availability which is a cornerstone 
of Cassandra’s and Scylla’s design.

Because the client does not wait for outstanding 
view updates to complete, their number may 
grow without bound and use unbounded 
amounts of memory on the various nodes 
involved—the coordinator, the RF base replicas 
and all the view replicas involved in the write. As 
in the previous section, here too we need to start 
slowing down the client, until the rate when the 
system completes background work at the same 
rate as new background work is generated.

To illustrate the problem Scylla needed to 
solve, let’s use our simulator again to look at a 
concrete example, continuing the same scenario 
we used above. Again we have three nodes, 
RF=3, client with 50 threads writing with CL=2. 
As before two nodes can complete 10,000 base 
writes per second, and the third only 9,900. But 
now we introduce a new constraint: the view 
updates add considerable work to each write, to 
the point that the cluster can now only complete 
3,000 writes per second, down from the 9,900 
it could complete without materialized views. 
The simulator shows us (top graph below) 
that, unsurprisingly, without a new flow-control 
mechanism for view writes the client is only 
slowed down to 9,900 requests per second, not 
to 3,000. The bottom graph shows that at this 
request rate, the memory devoted to incomplete 
view writes just grows and grows, by as many as 
6,900 (=9,900-3,000) updates per second:

So, what we need now is to find a mechanism 
for the coordinator to slow down the client to 
exactly 3,000 requests per second. But how 
do we slow down the client, and how does the 
coordinator know that 3,000 is the right request 
rate?

THROTTLING TO LIMIT BACKGROUND 
VIEW UPDATES
Let us now explain how Scylla 3.0 throttles the 
client to limit the backlog of view updates.

We begin with two key insights:

1. To slow down a batch client (with bounded 
concurrency), we can add an artificial delay 
to every response. The longer the delay is, the 
lower the client’s request rate will become.

2. The chosen delay influences the size of the 
view-update backlog: Picking a higher delay 
slows down the client and slows the growth 
of the view update backlog, or even starts 
reducing it. Picking a lower delay speeds up 
the client and increases the growth of the 
backlog.

Basically, our plan is to devise a controller, which 
changes the delay based on the current backlog, 
trying to keep the length of the backlog in a 
desired range.

The simplest imaginable controller, a linear 
function, works amazingly well:

  (1) delay = α . backlog
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Here α is any constant. Why does this 
deceptively-simple controller work?

Remember that if delay is too small, backlog 
starts increasing, and if delay is too large, the 
backlog starts shrinking. So there is some “just 
right” delay, where the backlog size neither 
grows nor decreases. The linear controller 
converges on exactly this just-right delay: 

1. If delay is lower than the just-right one, the 
client is too fast, the backlog increases, so 
according to our formula (1), we will increase 
delay.

2. If delay is higher than the just-right one, the 
client is too slow, the backlog shrinks, so 
according to (1), we will decrease delay.

Let’s add to our simulator the ability to delay 
responses by a given delay amount, and to vary 
this delay according to the view update backlog 
in the base replicas, using formula (1). The result 
of this simulation looks like this:

In the top graph, we see the client’s request 
rate gradually converging to exactly the request 
rate we expected: 3,000 requests per second. 
In the bottom graph, the backlog length settles 
on about 1600 updates. The backlog then stops 
growing any more—which was our goal.

But why did the backlog settle on 1600, and not 
on 100 or 1,000,000? Remember that the linear 
control function (1) works for any α. In the above 
simulation, we took α =1.0 and the result was 
convergence on backlog=1600. If we change α, 
the delay to which we converge will still have 
to be the same, so (1) tells us that, for example, 
if we double α to 2.0, the converged backlog 
will halve, to 800. In this manner, if we gradually 
change α we can reach any desired backlog 
length. Here is an example, again from our 
simulator, where we gradually changed α with 
the goal of reaching a backlog length of 200:
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Indeed, we can see in the lower graph that 
after over-shooting the desired queue length 
200 and reaching 700, the controller continues 
to increase to decrease the backlog, until 
the backlog settles on exactly the desired 
length—200. In the top graph we see that as 
expected, the client is indeed slowed down to 
3,000 requests per second. Interestingly in this 
graph, we also see a “dip”, a short period where 
the client was slowed down even further, to just 
2,000 requests per second. The reason for this 
is easy to understand: The client starts too fast, 
and a backlog starts forming. At some point 
the backlog reached 700. Because we want to 
decrease this backlog (to 200), we must have 
a period where the client sends less than 3,000 
requests per second, so that the backlog would 
shrink.

In controller-theory lingo, the controller with the 
changing is said to have an integral term: the 
control function depends not just on the current 
value of the variable (the backlog) but also on 
the previous history of the controller.

In (1), we considered the simplest possible 
controller—a linear function. But the proof above 
that it converges on the correct solution did not 
rely on this linearity. The delay can be set to any 
other monotonically-increasing function of the 
backlog: 

  (2) delay = f(backlog / backlog0) * delay0

(where backlog0 is a constant with backlog units, 
and delay0 is a constant with time units).

In Scylla 3.0 we chose this function to be a 
polynomial, selected to allow relatively-high 
delays to be reached without requiring very long 
backlogs in the steady state. But we do plan 
to continue improving this controller in future 
releases.

CONCLUSION
A common theme in Scylla’s design is the 
autonomous database, a.k.a. zero configuration. 
In this paper we covered another aspect of this 
theme: When a user unleashes a large writing 
job on Scylla, we don’t want him or her to need 
to configure the client to use a certain speed 
or risk overrunning Scylla. We also don’t want 
the user to need to configure Scylla to limit an 
over-eager client. Rather, we want everything 
to happen automatically: The write job should 
just just run normally without any artificial limits, 
and Scylla should automatically slow it down to 
exactly the right pace—not too fast that we start 
piling up queues until we run out of memory, but 
also not too slow that we let available resources 
go to waste.

We explained how Scylla throttles (slows down) 
the client by delaying its responses, and how 
we arrive at exactly the right pace. We started 
with describing how throttling works for writes 
to ordinary tables—a feature that had been in 
Scylla for well over a year. We then described 
the more elaborate mechanisms we introduce 
in Scylla 3.0 for throttling writes to tables with 
materialized views. For demonstration purposes, 
we used a simulator for the different flow-
control mechanisms to better illustrate how they 
work. However, these same algorithms have also 
been implemented in Scylla itself—so go ahead 
and ingest some data! Full steam ahead!
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